ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
УПРАВЛЕНИЕ И ПРИНЯТИЕ РЕШЕНИЙ
МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
S. A. Karatach, V. G. Sinuk "Parallel Implementation of Evolutionary Learning of a Fuzzy System with Non-Singleton Fuzzification"
S. A. Karatach, V. G. Sinuk "Parallel Implementation of Evolutionary Learning of a Fuzzy System with Non-Singleton Fuzzification"
Abstract. 

Fuzzy systems with fuzzy inputs can be used in tasks where it is necessary to make predictions for data objects that have fizzy characteristics. However, building an optimal block of rules for such a system may be non-trivial, including due to the requirement to have a certain depth of knowledge in the subject area. In this situation, there is a need to automate the process of compiling the rule base, that is, to build a machine learning algorithm. In this paper, we propose to use a genetic (evolutionary) algorithm as such an algorithm. It describes both the specifics of using this family of algorithms for training a fuzzy system, and the features of parallel implementation of the learning process using CUDA technology.

Keywords: 

Parallel implementation CUDA, Evolutionary learning, Fuzzy system

Стр. 113-122.

DOI 10.14357/20718632230212
 
References
 
1. L. Rutkowski. Methods and techniques of artificial intelligence. Hot Line Telecom, Moscow, 2010. ISBN 978-5-9912-0105-6. doi: 10.1049/piee.1974. 0328.
2. L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning—i. 8(3):199–249, 1975. doi: 10.1016/0020-0255(75) 90036-5.
3. N. Borisov, A. V. Alekseev, O. A. Kromberg, and etc. Decision-making models based on a linguistic variable. Senate, Riga, 1982.
4. Wen-Ruey Hwang and W. E. Thompson. Design of intelligent fuzzy logic controllers using genetic algorithms, 1994.
5. C. L. Karr and E. J. Gentry. Fuzzy control of ph using genetic algorithms. IEEE Transactions on Fuzzy Systems, 1(1):46–, 1993. doi: 10.1109/TFUZZ. 1993.390283.
6. Michael A. Lee and Hideyuki Takagi. Dynamic control of genetic algorithms using fuzzy logic techniques. In Proceedings of the 5th International Conference on Genetic Algorithms, page 76–83, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN 1558602992. doi: 10.5555/645513.657425.
7. D. Dubois and A. Prad. Theory of possibilities. Applications to the representation of knowledge in computer science. Radio and communications, Moscow, 1990. ISBN 5-256-00184-1. doi: 10.1007/3-540-45493-4 24.
8. V G Sinuk and M V Panchenko. Method of fuzzy inference for one class of MISO-structure systems with nonsingleton inputs. IOP Conference Series: Materials Science and Engineering, 327:042074, 3 2018. doi: 10.1088/1757-899x/327/4/042074.
9. V. G. Sinuk and E. V. Pivnenko. About an analytic calculation of fuzzy truth value. pages 129–133, 2006.
10. D. A. Kutsenko and V. G. Sinuk. Algorithms for finding cp under a piecewise linear representation of membership functions. pages 87–92, 2008.
11. Yuhui Shi, R. Eberhart, and Yaobin Chen. Implementation of evolutionary fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(2):109–119, 1999. doi: 10.1109/91.755393. 
2025 / 01
2024 / 04
2024 / 03
2024 / 02

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".