DATA PROCESSING AND ANALYSIS
O. G. Grigoriev, B. A. Kobriskii, N. A. Blagosklonov, B. G. Ginzburg Recommender Intelligent System for Chronic Disease Risk Management
INTELLIGENCE SYSTEMS AND TECHNOLOGIES
MATHEMATICAL MODELING
MANAGEMENT AND DECISION MAKING
MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
O. G. Grigoriev, B. A. Kobriskii, N. A. Blagosklonov, B. G. Ginzburg Recommender Intelligent System for Chronic Disease Risk Management
Abstract. 

A recommender intelligent system for the problem of health maintenance is presented, which provides the possibility of integral analysis of different types of information to assess the risk levels of chronic diseases and issue personal recommendations to reduce the likelihood or prevent the development of a pathological process. The system is based on a heterogeneous semantic network with a knowledge base solver that uses an argumentative reasoning algorithm. The recommendations given to the users are the practical realization of the modern concept of early detection of predisposition to the development of diseases with the focus on the active involvement of the person in the process of preventive measures. The results of testing the AI-HIPPOCRATES health-saving recommendation system on real data is considered; the possibility of using the proposed approach to assess the risks of chronic diseases (arterial hypertension, myocardial infarction, stroke, depression) based on a questionnaire is shown. At present, further research is aimed at modifying the developed intelligent recommendation system to monitor the psychoemotional state of critical infrastructure operators using remote monitoring data.

Keywords: 

Recommender system; Artificial intelligence; Chronic disease risk assessment; Monitoring of physiological indicators; Health preservation; Monitoring of psycho-emotional state; Personal recommendations.

PP. 27-37.

DOI 10.14357/20718632230203
 
References

1. Dartau L.A. Theoretical aspects of health management and the possibilities of its implementation in the Russian Federation. Problemy upravleniya. 2003;(2): 43-52.
2. Emel'yanov S.V. Selected works S.V. Emelyanova: in 2 volumes (Korovin S.K. (Ed)) Moscow: Izdatelstvo Moskovskogo universiteta.
3. Order of the Ministry of Health of Russian Federation No. 186 of 24 April 2018 «Ob utverzhdenii Koncepcii prediktivnoj, preventivnoj i personalizirovannoj mediciny».
Available at: https://www.garant.ru/products/ipo/prime/doc/71847662/ (accessed: September 22, 2022).
4. Schafer H., Hors-Fraile S., Karumur R.P., Calero Valdez A., Said A., Torkamaan H., Ulmer T., Trattner C. Towards health (aware) recommender systems. Proceedings of the International Conference on Digital Health, DH’17; 2-5 July 2017; London United Kingdom. Association for Computing Machinery, New York, United States; 2017. doi: 10.1145/3079452.3079499.
5. Wiesner M., Pfeifer D. Health recommender systems: Concepts, requirements, technical basics and challenges. Int J Environ Res Public Health. 2014;11(3):2580–2607.
doi: 10.3390/ijerph110302580.
6. Mlika F., Karoui W. Proposed Model to Intelligent Recommendation System based on Markov Chains and Grouping of Genres. Procedia Computer Science. 2020; 176:868-877. doi: 10.1016/j.procs.2020.09.082.
7. Cui Y. Intelligent Recommendation System Based on Mathematical Modeling in Personalized Data Mining. Mathematical Problems in Engineering. 2021;2021:1-11.
doi:10.1155/2021/6672036.
8. Aguilar J., Valdiviezo-Dı´az P., Riofrio G. A general framework for intelligent recommender Systems. Applied Computing and Informatics. 2017;13(2):147–160. doi: 10.1016/j.aci.2016.08.002.
9. Ojokoh B., Omisore M., Samuel O., Ogunniyi T. A fuzzy logic based personalized recommender system. International Journal of Computer Science and Information Security. 2012;2(5):1008–1015.
10. Sahoo A.K., Pradhan C., Barik R.K., Dubey H. Deepreco: Deep learning based health recommender system using collaborative filtering. Computation. 2019;7(2):25. doi: 10.3390/computation7020025.
11. De Croon R., Van Houdt L., Htun N.N., Štiglic G., Abeele V.V., Verbert K. Health Recommender Systems: Systematic Review. Journal of Medical Internet Research. 2021;23(6):e18035. doi: 10.2196/18035.
12. Paltsev M.A., Belushkina N.N., Chaban E.A. 4P-Medicine as a new model of healthcare in the Russian Federation. HEALTHCARE MANAGEMENT: news, views, education. 2015;(2):48-54.
13. Sagner M., McNeil A., Puska P., Auffray Ch., Price N.D., Hood L., Lavie C.J., Han Z.-G., Chen Z., Brahmachari S.K., McEwen B.S., Soares M.B., Balling R., Epel E., Arena R. The P4 Health Spectrum – A Predictive, Preventive, Personalized and Participatory Continuum for Promoting Healthspan. Progress in Cardiovascular Diseases. 2017;59(5):506-521. doi: 10.1016/j.pcad.2016.08.002.
14. Baiardini I., Heffler E. Chapter 21 – The Patient-Centered Decision System as per the 4Ps of Precision Medicine. In: Agache I, Hellings P, editors. Implementing Precision Medicine in Best Practices of Chronic Airway Diseases. London: Academic Press; 2019. P.147-151. doi: 10.1016/B978-0-12-813471-9.00024-4.
15. Flores M., Glusman G., Brogaard K., Price N.D., Hood L. P4 medicine: how systems medicine will transform the healthcare sector and society. Personalized Medicine. 2013;10(6):565-576. doi: 10.2217/PME.13.57.
16. Tran Th.N.T., Felfernig A., Trattner Ch., Holzinger A.
Recommender systems in the healthcare domain: state-ofthe-art and research issues. Journal of Intelligent Information Systems. 2021;57:171–201. doi: 10.1007/s10844- 020-00633-6.
17. Kobrinskii B.A., Grigoriev O.G., Molodchenkov A.I., Smirnov I.V., Blagosklonov N.A. Artificial Intelligence Technologies Application for Personal Health Management. IFAC-PapersOnLine. 2019;52(25):70-74. doi: 10.1016/j.ifacol.2019.12.448.
18. Osipov G.S. Metody iskusstvennogo intellekta. Moscow: FIZMATLIT. 2016.
19. Kobrinskii B.A., Kadykov A.S., Poltavskaya M.G., Blagosklonov N.A., Kovelkova M.N. The principles of the operation of an intellectual system of dynamic risk control and the formation of health recommendations. Profilakticheskaya
Meditsina. 2019;22(5):7884. doi: 10.17116/profmed20192205178.
20. Krutko V.N., Molodchenkov A.I. Conceptual foundation and architecture of the Internet system for personalized healthcare support using data intensive analysis. Proceedings of Data Analytics and Management In Data Intensive Domains XVIII International Conference DAMDID /
RCDL’2016 October 11-14, 2016, Ershovo, Moscow, Russia. Moscow: FRC CSC RAS. 2016. Pp.393-401.
 
 

2024 / 03
2024 / 02
2024 / 01
2023 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".