DATA PROCESSING AND ANALYSIS
INTELLIGENCE SYSTEMS AND TECHNOLOGIES
MATHEMATICAL MODELING
MANAGEMENT AND DECISION MAKING
T.V. Avetisyan, Ya.E. Lvovich, A.P. Preobrazhensky, Yu.P. Preobrazhensky Investigation of the Possibilities of Optimizing the Management Processes of Cyberphysical Systems
MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
T.V. Avetisyan, Ya.E. Lvovich, A.P. Preobrazhensky, Yu.P. Preobrazhensky Investigation of the Possibilities of Optimizing the Management Processes of Cyberphysical Systems
Abstract. 

The article discusses the features of solving problems related to the optimization of control processes in cyberphysical systems at manufacturing enterprises. With the help of the proposed approach based on the theory of graphs and structural matrices, there are opportunities to evaluate the effectiveness of the cyberphysical system and explore alternative options for its formation. The optimization task was formed in order to evaluate the effectiveness of management functions. It is considered as a linear programming problem with Boolean variables. The results show the possibility of improving the management efficiency of cyber-physical systems.

Keywords: 

cyberphysical system, optimization, management, process, model.

PP. 96-105.

DOI 10.14357/20718632230210
 
References

1. Lvovich I., Lvovich Y., Preobrazhenskiy A. Modeling the processes of increasing the efficiency of the internet of things system // In the collection: Proceedings - 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022. 2022. С. 1030-1034.
2. Lvovich I., Lvovich Y., Preobrazhenskiy A. Modeling the classification of internet of things objects by failures // In the collection: Proceedings - 2022 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2022. 2022. С. 1035-1039.
3. Len Bass, Ingo Weber, Liming Zhu. DevOps A Software Architect’s Perspective. NJ: Addison-Wesley Professional, 2015. URL: http://ptgmedia.pearson cmg.com/images/9780134049847/samplepages/978013 4049847.pdf (date of application 26.12.2022).
4. Richard W. Selby. Software Engineering: Barry W. Boehm's Lifetime Contributions to Software Development,   Management, and Research. — John Wiley & Sons, 2007-06-04. — 834 p.
5. Ingland R. Ovladevaya ITIL [Mastering ITIL]. M.: Lajvbuk [Live Book], 2011. – 200 p.
6. The Open Group architecture framework. URL:
http://www.opengroup.org/togaf (date of application 26.12.2022).
7. Muhammad Ali Babar, Brown A. W., Mistrik I. Agile software architecture aligning agile processes and software architectures. MA, USA: Morgan Kaufmann, 2014.
8. R. V. Meshcheryakov, A. YU. Iskhakov, O. O. Evsyutin, Sovremennye metody obespecheniya celostnosti dannyh v protokolah upravleniya kiberfizicheskih sistem [Modern methods of ensuring data integrity in control protocols of cyberphysical systems], Tr. SPIIRAN, 2020, Issue 19, Volume 5, 1089-1122 DOI:
https://doi.org/10.15622/ia.2020.19.5.7
9. Cvirkun A. D., Akindiev V. K. Struktura mnogourovnevyh i krupnomasshtabnyh sistem (sintez i planirovanie razvitiya) [Structure of multilevel and large-scale systems (synthesis and development planning)]. M.: Nauka, 1993. 160 p.
10. Hahn A., Ashok A., Sridhar S., Govindarasu M. Cyberphysical security testbeds: Architecture, application, and evaluation for smart grid // IEEE Transact. of Smart Grid. 2013. N 4(2). P. 847—855. DOI:10.1109/TSG.2012.2226919.
11. Ronzhin A. L., Basov O. O., Sokolov B. V., YUsupov R. M. Konceptual'naya i formal'naya modeli sinteza kiberfizicheskih sistem i intellektual'nyh prostranstv [Conceptual and formal models of synthesis of cyberphysical systems and intellectual spaces] // Izv. vuzov. Priborostroenie [Izv. vuzov. instrumentation]. 2016. T. 59, № 11, p. 897-905.12. Abbas S. A., Vodyaho A. I., ZHukova N. A., CHervoncev M. A., M'o Aung Ob odnom podhode k postroeniyu sistem sbora dannyh v kiberfizicheskih sistemah, postroennyh na platformah tumannyh vychislenij [On one approach to the construction of data collection systems in cyberphysical systems built on fog computing platforms] // Izvestiya SPbGETU «LETI» № 7/2020, p.5-14.
13. Stupnikov S. A. Otobrazhenie grafovyh modelej dannyh v kanonicheskuyu model' v sistemah s intensivnym ispol'zovaniem dannyh [Mapping graph data models into a
canonical model in systems with intensive use of data] // Sistemy vysokoj dostupnosti [High availability systems] 2014, №2, p. 13-31.
14. Grozmani E.S., Petrov S.V. Razrabotka modeli processa upravleniya informacionnoj bezopasnost'yu kiberfizicheskoj sistemy [Development of a model of the information security management process of a cyberphysical system] // T-Comm: Telekommunikacii i transport [TComm:
Telecommunications and transport.]. 2022. T. 16. № 1. P. 38-43.
15. L'vovich YA.E., Preobrazhenskij YU.P., Ruzhickij E. Analiz nekotoryh napravlenij povysheniya propusknoj sposobnosti ip-setej svyazi [Analysis of some directions of
increasing the bandwidth of IP communication networks] // Vestnik Voronezhskogo instituta vysokih tekhnologij [Bulletin of the Voronezh Institute of High Technologies]. 2022. No. 1 (40). pp. 42-45.
16. L'vovich YA.E., Preobrazhenskij YU.P., Ruzhickij E. Osobennosti optimizacii besprovodnyh sistem svyazi [Features of optimization of wireless communication systems]
// Vestnik Voronezhskogo instituta vysokih tekhnologij [Bulletin of the Voronezh Institute of High Technologies]. 2022. No. 1 (40). pp. 68-71.
17. Lvovich I.Y., Preobrazhenskiy A.P., Lvovich Y.E., Choporov O.N. Algorithmization of control of information and telecommunication systems based on the optimization model // In the collection: Procedia Computer Science. 14. Сер. "14th International Symposium "Intelligent Systems", INTELS 2020" 2021. С. 563-570.
 

2024 / 03
2024 / 02
2024 / 01
2023 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".