MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
IMAGE PROCESSING METHODS
CONTROL SYSTEMS
APPLIED ASPECTS OF COMPUTER SCIENCE
N. Bakhtadze, E. Maximov, N. Maximova, D. Donchan, D. Kuznetsov, E. Zakharov Intelligent Management Systems for Digital Farming. Part 2
N. Bakhtadze, E. Maximov, N. Maximova, D. Donchan, D. Kuznetsov, E. Zakharov Intelligent Management Systems for Digital Farming. Part 2
Abstract. 

The article presents an approach to the creation of information systems for digital farming, which allows more rational planning of land use, the use of fertilizers and fuel based on information technologies and intelligent forecasting models, which reduces the cost of production and increases the efficiency of agricultural production. In addition, a long-term agronomic and environmental effect can be achieved due to more gentle tillage and a decrease in the use of nitrogen fertilizers. The first sections of Part 2 of this article present methods for predicting the level of vegetation depending on the current values of key indicators and parameters of the selected mode. The following are the results of constructing intelligent identification models for forecasting prices for digital agricultural products. 

Keywords: 

digital farming, soft sensors, predictive models, knowledge management. 

PP. 99-110.

DOI 10.14357/20718632200209 
 
References

1. Bakhtadze, N., Maximov, E., Donchan, D., Maximova, N.E., Kozlovskaya, L., 2019. Innovation and knowledge management in precision farming / Proceedings of the 12th IADIS International Conference on Information Systems (Utrecht, Netherlands, 2019). Utrecht, Netherlands: International Association for Development of the Information Society. 2019. Pp. 265-270.
2. Basosi, R., Spinelli1, D., Fierro, A., Jez S. Mineral nitrogen fertilizers: environmental impact of production and use // Journal of Environmental Management. 2013. Vol. 129. Pp. 302-308. DOI:10.1016/j.jenvman.2013.07.029
3. Khan, M.N., Mobin, M., Abbas, Z.K. and Alamri, S.A. Fertilizers and Their Contaminants in Soils, Surface and Groundwater // The Encyclopedia of the Anthropocene. 2018. Vol. 5. P. 225-240. DOI: 10.1016/B978-0-12-409548-9.09888-2
4. Serpil, S. Investigation of Effect of Chemical Fertilizers on Environment // Proceedings of International Conference on Environmental Science and Development (ICESD 2012). Hong Kong, 2012. P. 287 – 292. DOI: 10.1016/j.apcbee.2012.03.047
5. Federal State Statistics Service (ROSSTAT) URL: https://gks.ru/price
6. Scenario forecast of the grain market of Russia. Analytical Center under the Government of the Russian Federation, 2016.58 p.Bekkerman, A., Brester, G.W. and Taylor, M. Forecasting a Moving Target: The Roles of Quality and Timing for Determining Northern U.S. Wheat Basis // Journal of Agricultural and Resource Economics. 2016. Vol. 41, No. 1. Pp. 25-41.
7. Bekkerman, A., Brester, G.W. and Taylor, M. Forecasting a Moving Target: The Roles of Quality and Timing for Determining Northern U.S. Wheat Basis // Journal of Agricultural and Resource Economics. 2016. Vol. 41, No. 1. Pp. 25-41.
8. Jiang, B. Corn and soybean basis behavior and forecasting: fundamental and alternative approaches: diss. of Ph.D. /Ames, Iowa: Iowa State University, 1997. 157p. https://lib.dr.iastate.edu/rtd/12214
9. Rajeswari, S., Suthendran, K. Developing an Agricultural Product Price Prediction Model using HADT Algorithm // International Journal of Engineering and Advanced Technology. 2019. Vol. 9, iss. 1S4. – Pp. 569-575.
10. Ruekkasaem, L., Sasananan, M. Forecasting agricultural products prices using time series methods for crop planning // International Journal of Mechanical Engineering and Technology. 2018. Vol. 9, iss. 7. Pp. 957–971.
11. Varun, R, Neema, N., Sahana, H.P., Sathvik, A., Muddasir, A. Agriculture Commodity Price Forecasting using Ml Techniques // International Journal of Innovative Technology and Exploring Engineering. 2019. Vol. 9, iss. 2S. P. 729-732.
12. Kantanantha, N., Serban, N., and Grin, P. Yield and Price Forecasting for Stochastic Crop Decision Planning // Journal of Agricultural, Biological, and Environmental Statistics. 2010. Vol. 15, No. 3. P. 362-380. DOI: 10.1007/s13253-010-0025-7
13. Westcott, P.C. and Hoffman, L.A. Price Determination for Corn and Wheat: The Role of Market Factors and Government Programs / Market and Trade Economics Division, Economic Research Service, U.S. Department of Agriculture. Technical Bulletin No. 1878. 1999. 30 p.
14. Korableva A.A., Chupin R.I., Kharlamova M.S. Influence Evaluation of the resources balance factors of and the grain use on the price of wheat in the regions of Russia // Bulletin of Perm University. Series: Economics. 2018.Vol. 13, No. 4. Cc. 532-548.Enghiad, A., Ufer, D., Countryman, A.M., and Thilmany, D.D. An Overview of Global Wheat Market Fundamentals in an Era of Climate Concerns // International Journal of Agronomy. 2017. Vol. 2017. – Pp. 1-15.
15. Enghiad, A., Ufer, D., Countryman, A.M., and Thilmany, D.D. An Overview of Global Wheat Market Fundamentals in an Era of Climate Concerns // International Journal of Agronomy. 2017. Vol. 2017. – Pp. 1-15.
16. Gyarmati, G. On what Factors the Wheat Production and Price Depends // Management, Enterprise and Benchmarking in the 21st Century. Budapest, 2017. Pp. 78-96.
17. Borychowski, M. Czyżewski, A. Determinants of prices increase of agricultural commodities in a global context // Management. 2015. Vol. 19, iss. 2. Pp. 152-167.
18. Levin, C., Coburn, T. Excessive speculation in the wheat market / United States Senate Permanent Subcommittee on Investigations. 2009. 174 p.
19. Rylko D.N., Kolinko O.N., Bashkirova V.G. Russian wheat exports: economic aspects. M.: IMEMO RAS, 2014. 72 p.
20. Svanidze, M., Gotz, L. Determinants of spatial market efficiency of grain markets in Russia // Food Policy. 2019. Vol. 89. P. 60-68. DOI: 10.1016/j.foodpol.2019.101769.
 
2020 / 02
2020 / 01
2019 / 04
2019 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".