MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
IMAGE PROCESSING METHODS
A.V. Bokovoy, K.F. Muraviev, K.S. Yakovlev Vision-Based Simultaneous Localization, Mapping and Exploration System
CONTROL SYSTEMS
APPLIED ASPECTS OF COMPUTER SCIENCE
A.V. Bokovoy, K.F. Muraviev, K.S. Yakovlev Vision-Based Simultaneous Localization, Mapping and Exploration System
Abstract: 

In this work we consider the problem of robotic system navigation in unknown environment, with restriction on the onboard sensor’s array (monocular camera only). We introduce software system for simultaneous localization, mapping and exploration. A description of the system’s architecture as well as of its core modules is presented. The system was evaluated both in simulation and on a real wheeled robot. The results of this evaluation are given. 

Keywords: 

simultaneous localization and mapping, video stream, exploration, unknown environment, robotics. 
 
PP. 51-61. 

DOI 10.14357/20718632200205 
 
References

1. Timofeev A. V., Jusupov R. M. Principy postroenija integrirovannyh sistem mul'tiagentnoj navigacii i intellektual'nogo upravlenija mehatronnymi robotami //Information Technologies & Knowledge. – 2011. – Т. 5. – № 3. – С. 237-244.
2. Karpov V. Je., Platonova M. V. Sistema navigacii mobil'nogo robota //Informacionnye sredstva i tehnologii: tr. 18-j Mezhdunar. nauch.-tehn. konf. Moskva, 19-21 oktjabrja. – 2010. – С. 56.
3. Velagic J., Lacevic B., Perunicic B. A 3-level autonomous mobile robot navigation system designed by using reasoning/ search approaches //Robotics and Autonomous Systems. – 2006. – Т. 54. – №. 12. – С. 989-1004.
4. Siagian C., Chang C. K., Itti L. Mobile robot navigation system in outdoor pedestrian environment using visionbased road recognition //2013 IEEE International Conference on Robotics and Automation. – IEEE, 2013. – С. 564-571.
5. Segura M. et al. Experimental demonstration of selflocalized ultra wideband indoor mobile robot navigation system //2010 International Conference on Indoor Positioning and Indoor Navigation. – IEEE, 2010. – С. 1-9.
6. Conte G., Doherty P. An integrated UAV navigation system based on aerial image matching //2008 IEEE Aerospace Conference. – IEEE, 2008. – С. 1-10.
7. Vega A. et al. Socially aware robot navigation system in human-populated and interactive environments based on an adaptive spatial density function and space affordances //Pattern Recognition Letters. – 2019. – Т. 118. – С. 72-84.
8. Cesetti A. et al. A vision-based guidance system for UAV navigation and safe landing using natural landmarks //Journal of intelligent and robotic systems. – 2010. – Т. 57. – №. 1-4. – С. 233.
9. Mur-Artal R., Montiel J. M. M., Tardos J. D. ORBSLAM: a versatile and accurate monocular SLAM system //IEEE transactions on robotics. – 2015. – Т. 31. – №. 5. – С. 1147-1163.
10. Klein G., Murray D. Parallel tracking and mapping for small AR workspaces //2007 6th IEEE and ACM international symposium on mixed and augmented reality. – IEEE, 2007. – С. 225-234.
11. Davison A. J. et al. MonoSLAM: Real-time single camera SLAM //IEEE transactions on pattern analysis and machine intelligence. – 2007. – Т. 29. – №. 6. – С. 1052-1067.
12. Bay H., Tuytelaars T., Van Gool L. Surf: Speeded up robust features //European conference on computer vision. – Springer, Berlin, Heidelberg, 2006. – С. 404-417.
13. Rublee E. et al. ORB: An efficient alternative to SIFT or SURF //2011 International conference on computer vision. – Ieee, 2011. – С. 2564-2571.
14. Strasdat H., Montiel J., Davison A. J. Scale drift-aware large scale monocular SLAM //Robotics: Science and Systems VI. – 2010. – Т. 2. – №. 3. – С. 7.
15. Engel J., Koltun V., Cremers D. Direct sparse odometry //IEEE transactions on pattern analysis and machine intelligence. – 2017. – Т. 40. – №. 3. – С. 611-625.
16. Bokovoy A., Muravyev K., Yakovlev K. Real-time visionbased depth reconstruction with NVIDIA jetson //2019 European Conference on Mobile Robots (ECMR). – IEEE, 2019. – С. 1-6.
17. Murav'ev K.F., Bokovoj A.V. i Jakovlev K.S. Ocenka kachestva algoritmov kartirovanija i lokalizacii na osnove videodannyh v simuljacionnyh sredah // Zavalishinskie chtenija’20: XV Mezhdunarodnaja konferencija po jelektromehanike i robototehnike (SPb., 15-18 aprelja 2020 g.): sb. dokl. – SPb.: GUAP, 2020.
18. Engel J., Schöps T., Cremers D. LSD-SLAM: Large-scale direct monocular SLAM //European conference on computer vision. – Springer, Cham, 2014. – С. 834-849.
19. Wirth S., Pellenz J. Exploration transform: A stable exploring algorithm for robots in rescue environments //2007 IEEE International Workshop on Safety, Security and Rescue Robotics. – IEEE, 2007. – С. 1-5.
20. Ristic B., Palmer J. Autonomous Exploration and Mapping with RFS Occupancy-Grid SLAM // Entropy. – 2018. – Т. 20. – №. 6. – С. 456.\
21. Fraundorfer F., Heng L., Honegger D., Lee G. H., Meier L., Tanskanen P. and Pollefeys M. Vision-based autonomous mapping and exploration using a quadrotor MAV //2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. – IEEE, 2012. – С. 4557-4564.
22. Kuzakov D. E., D'jakov M. S., Lavrent'ev M. M. Poisk putej dlja gruppy avtonomnyh transportnyh sredstv pri issledovanii neizvestnoj territorii //Vestnik Novosibirskogo gosudarstvennogo universiteta. Serija: Informacionnye tehnologii. – 2016. – Т. 14. – №. 2.
23. Andreychuk, A.A., Yakovlev, K.S. Two-dimensional path finding subject to geometric constraints. J. Comput. Syst. Sci. Int. 56, 1021–1036 (2017).
24. Quigley M. et al. ROS: an open-source Robot Operating System //ICRA workshop on open source software. – 2009. – Т. 3. – №. 3.2. – С. 5.
25. Labbé M., Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation //Journal of Field Robotics. – 2019. – Т. 36. – №. 2. – С. 416-446.
 

2020 / 02
2020 / 01
2019 / 04
2019 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".