MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
IMAGE PROCESSING METHODS
V.N. Gridin, A.S. Lebedev, I.A. Bubnova, I.A.Novikov, O.B. Tarasova, B.R.Salem Digital Image Analysis of Optical Sections of the Cornea for the Diagnosis of Early Keratoconus
CONTROL SYSTEMS
APPLIED ASPECTS OF COMPUTER SCIENCE
V.N. Gridin, A.S. Lebedev, I.A. Bubnova, I.A.Novikov, O.B. Tarasova, B.R.Salem Digital Image Analysis of Optical Sections of the Cornea for the Diagnosis of Early Keratoconus
Abstract.

A set of mathematical techniques and algorithms for the diagnosis of early keratoconus has been developed. The methods are based on the use of original features obtained by recognition of transverse optical sections of the cornea in images done with the camera based on Scheimpflug principle used in the Pentacam device (Oculus, Germany). In particular, a method is proposed for calculating the radius of curvature of the corneal borders, based on their approximation by a regression spline with a penalty function. The use of the stroma brightness in a digital image is proposed as a characterizing feature of the structure — an indicator of the light scattering intensity by the cornea material, or the brightness index of the cornea. A classifier is constructed that ensures the separability of classes 0 (norm) and 1 (early keratoconus) in a two-dimensional feature space: the position of the junction of the regular surface of the cornea and the ectasia zone, the brightness index of the cornea. 

Keywords: 

keratoconus, Scheimpflug camera, Pentacam, corneal curvature, light scattering of corneal matter, support vector machine, classification. 

PP. 62-74.

DOI 10.14357/20718632200206 
 
References

1. Аветисов С.Э. Кератоконус: современные подходы к изучению патогенеза, диагностике, коррекции и лечению. Вестник офтальмологии. 2014; 6:37-43. [Avetisov. S. Keratoconus: modern approaches to pathogenetic studies, diagnosis, optical correction, and treatment. Vestnik oftal'mologii. 2014;6:37-43. (In Russ.).]
2. Rabinowitz Y.S. Keratoconus. Survey of ophthalmology. 1998;42(4):297-319.
3. Ramos-López D., Martínez-Finkelshtein A., Castro-Luna G.M., Burguera-Gimenez N., Vega-Estrada A., Pinero D., et al. Screening subclinical keratoconus with placidobased corneal indices. Optometry & Vision Science. 2013;90(4):335-343.
4. Steinberg J., Aubker-Schultz S., Frings A., Hülle J., Druchkiv V., Richard G., et al. Correlation of the KISA% index and Scheimpflug tomography in ‘normal’,‘ subclinical’,‘keratoconus suspect’and ‘clinically manifest’keratoconus eyes. Acta ophthalmologica Supplement. 2015;93(3):e199-e207.
5. Vázquez, P. R. R., Galletti, J. D., Minguez, N., Delrivo, M., Bonthoux, F. F., Pförtner, T., & Galletti, J. G. (2014). Pentacam Scheimpflug tomography findings in topographically normal patients and subclinical keratoconus cases. American journal of ophthalmology, 158(1), 32-40.
6. Shetty, R., Rao, H., Khamar, P., Sainani, K., Vunnava, K., Jayadev, C., & Kaweri, L. (2017). Keratoconus screening indices and their diagnostic ability to distinguish normal from ectatic corneas. American journal of ophthalmology, 181, 140-148.
7. Бикбов М. М. и др. Оценка значимости показателей проекционного сканирующего кератотопографа в диагностике субклинического кератоконуса //РМЖ. Клиническая офтальмология. – 2017. – Т. 17. – №. 3.
8. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
9. OpenCV library. Available at: https://opencv.org/ (accessed March 10, 2020)
10. ALGLIB library. Available at: http://www.alglib.net/ (accessed March 10, 2020)
11. Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems journal, 4(1), 25-30.
12. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
13. scikit-learn project. Available at: https://scikitlearn. org/stable/ (accessed March 10, 2020)
14. Pentacam images. URL: http://interzona.space/pub/kcdepersonalized/ (accessed March 10, 2020)
15. Гридин В.Н., Бубнова И.А., Новиков И.А. Ранний кератоконус и развитые стадии заболевания. Дивергенция признаков и их потенциальная чувствительность при разработке систем машинной диагностики // Информационные технологии и математическое моделирование систем. Труды международной научно-технической конференции 2019
16. Гридин В.Н., Новиков И.А., Солодовников В.И., Труфанов М.И., Лебедев А.С., Бубнова И.А., Борисенко Т.Е. Ошибка вычисления локального радиуса кривизны передней поверхности роговицы по оптическим срезам, как самостоятельный диагностический признак кератоконуса (предварительное сообщение). // Медицина – 2019 Т.7. - №1- С.42-54
17. Lopes, B. T., Ramos, I. C., Dawson, D. G., Belin, M. W., & Ambrosio Jr, R. (2016). Detection of ectatic corneal diseases based on pentacam. Zeitschrift für Medizinische Physik, 26(2), 136-142.
18. Аветисов С. Э. и др. О необходимости пересмотра интерпретации данных денситометрической оценки прозрачности роговицы //Вестник офтальмологии. – 2016. – Т. 132. – №. 6. – С. 20-28.
 

2020 / 02
2020 / 01
2019 / 04
2019 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".