MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
G. A. Kiselev Intelligent Behavior Planning System for a Coalition of Robotic Agents with STRL Architecture
IMAGE PROCESSING METHODS
CONTROL SYSTEMS
APPLIED ASPECTS OF COMPUTER SCIENCE
G. A. Kiselev Intelligent Behavior Planning System for a Coalition of Robotic Agents with STRL Architecture
Abstract. 

This work is devoted to the issues of software implementation of the STRL architecture of a cognitive agent for a group of robotic platforms. The problem of the synthesis of coalitional and individual spatial plans of agent behavior is considered. The results of the adaptation of the methods of the theory of the sign world model when constructing hierarchical control systems based on the mobile platform MP-RM Zarnica are presented. A number of experiments were conducted to build joint coalition plans, including actions for moving in space and for manipulating objects. 

Keywords: cognitive agents, hierarchical planning, geometric planning, pseudophysical logics, sign approach, coalitions of agents, robotics. 

PP. 21-37.

DOI 10.14357/20718632200203 
 
References

1. Emelyanov S. and etc. (2015) Multilayer cognitive architecture for UAV control. Cognitive System Research, 34.
2. Makarov D. A, Panov A. I., Yakovlev K. S. STRL: multilevel control intelligent agents system // In the book: Fifteenth National Conference on Artificial Intelligence with international participation KII-2016 (October 3-7, 2016, Smolensk, Russia): Proceedings of the conference T. 1. Smolensk: Universum, 2016.S. 179-188.
3. https://zarnitza.ru/catalog/mekhatronika-irobototekhnika/ robototehnika/sredne-spetsialnyeuchebnye-zavedeniya/ustanovka-po-izucheniyu-mobilnyxrobotizirovannyx-sistem-na-baze-mobilnoj-platformy-irobota-manipulyatora-mp-rm-104/
4. Osipov, G.S., Panov, A.I., Chudova, N. V.: Behavior control as a function of con- sciousness. I. World model and goal setting. J. Comput. Syst. Sci. Int. 53, 517529 (2014).
5. Bechon, P., Barbier, M., Grand, C., Lacroix, S., Lesire, C., & Pralet, C. (2018). Integrating planning and execution for a team of heterogeneous robots with time and communication constraints. 1091–1097.
6. Benjamin, D. P., Li, T., Shen, P., Yue, H., Zhao, Z., & Lyons, D. (2018). Spatial understanding as a common basis for human-robot collaboration. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-3-319-60384-1_3J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, Y. Qin. An integrated theory of the mind. Psychological Review, 111(4):1036–1060, 2004.
7. Thome, R., Fedor, C., Sustersic, J., & Ukah, U. (2015). Non-linear Decision Making for Robust Navigation in Role Based Autonomy.
8. Davis, D. N., & Ramulu, S. K. (2017). Reasoning with BDI robots: From simulation to physical environment - Implementations and limitations. Paladyn, 8(1), 39–57. https://doi.org/10.1515/pjbr-2017-0003
9. Madl, T., Franklin, S., Chen, K., & Trappl, R. (2018). A computational cognitive framework of spatial memory in brains and robots. Cognitive Systems Research, 47, 147–172. https://doi.org/10.1016/j.cogsys.2017.08.002
10. H. Younes and R. Simmons, “VHPOP: Versatile heuristic partial order planner,” JAIR, vol. 20, pp. 405–430, 2003.
11. R. Dechter, I. Meiri, and J. Pearl, “Temporal Constraint Networks,” Artificial Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.
12. Kim, B., Wang, Z., Kaelbling, L. P., & Lozano-Pérez, T. (2019). Learning to guide task and motion planning using score-space representation. International Journal of Robotics Research, 38(7), 793–812. https://doi.org/10.1177/0278364919848837
13. Berenson D, Abbeel P and Goldberg K (2012) A robot path planning framework that learns from experience. In: IEEE Confer- ence on Robotics and Automation.
14. Dantam NT, Kingston Z, Chaudhuri S and Kavraki L (2017) Incremental task and motion planning: A constraint-based approach. In: Robotics: Science and Systems.
15. Dey D, Liu TY, Sofman B and Bagnell JA (2012 a) Efficient optimization of control libraries. In: AAAIConference on Artificial Intelligence.
16. Hoda´l J and Dvorˇa´k J (2008) Using case-based reasoning for mobile robot path planning. Journal ofEngineering Mechanics 15(3): 181–191.
17. Jetchev N and Toussaint M (2013) Fast motion planning from experience: Trajectory prediction for speeding up movement generation. Autonomous Robots 34(1–2): 111–127.
18. Kaelbling LP and Lozano-Pe´rez T (2013) Integrated task and motion planning in belief space. The International Journal of Robotics Research 32(9–10): 1194–1227.
19. Kim B,Kaelbling LP and Lozano-Pe´rez T (2017) Learning to guide task and motion planning using score-space representation. In: IEEE Conference on Robotics and Automation.
20. G.S. Osipov, A.I. Panov Relationships and Operations in a Sign-Based World Model of the Actor // Scientific and Technical Information Processing. 2018. No. 5.
21. Panov A.I. Behavior Planning of Intelligent Agent with Sign World Model // Biol. Inspired Cogn. Archit. 2017. Vol. 19. P. 21–31.
22. Osipov, G.S., Panov, A.I., Chudova, N. V.: Behavior control as a function of consciousness. I. World model and goal setting. J. Comput. Syst. Sci. Int. 53, 517529 (2014).
23. Osipov, G.S., Panov, A.I., Chudova, N. V.: Behavior Control as a Function of Consciousness. II. Synthesis of a Behavior Plan. J. Comput. Syst. Sci. Int. 54, 882896 (2015).
24. Osipov, G.S.: Sign-based representation and word model of actor. In: Yager, R., Sgurev, V., Hadjiski, M., and Jotsov, V. (eds.) 2016 IEEE 8th International Conference on Intelligent Systems (IS). pp. 2226. IEEE (2016).
25. Leontiev A.N. Activity Consciousness. Personality. М.: Politizdat, 1975.
26. Bruner J. Psychology of knowledge. Outside of direct information. M .: Progress, 1977.413 s.
27. Panov, A.I. (2018). The image component formation of knowledge of a cognitive agent with sign world model. Information technology and computer systems, (4).
28. Kiselev, G.A., Panov, A.I.: Sign-based Approach to the Task of Role Distribution in the Coalition of Cognitive Agents. In: SPIIRAS Proceedings, pp. 161–187 (2018).
29. Andreichuk, A.A., Kiselev, G.A., & Yakovlev, K.S. (2019). Integration of Behavioral Planning Methods and Trajectory Planning. Proceedings of the 17th National Conference with the International Participation of KII- 2019. Volume 1, pp. 66-75.
30. Kiselev, G., & Panov, A. (2019). Hierarchical psychologically inspired planning for human-robot interaction tasks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-030-26118-4_15.
31. Pospelov D.A. Situational management: theory and practice. M .: Nauka, 1986.288 s.
32. https://github.com/cog-isa/map-core.git
33. https://github.com/cog-isa/map-multi.git
34. https://github.com/cog-isa/map-spatial.git
 

2020 / 02
2020 / 01
2019 / 04
2019 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".