ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ
ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ
РАСПОЗНАВАНИЕ ОБРАЗОВ
УПРАВЛЕНИЕ И ПРИНЯТИЕ РЕШЕНИЙ
A.V. Bokovoy Automatic control system’s architecture for group of small unmanned aerial vehicles
A.V. Bokovoy Automatic control system’s architecture for group of small unmanned aerial vehicles

Abstract.

This paper presents methods and algorithms for vision marker-based automatic control of small aerial vehicles group in GPS/GLONASS-denied environment. We explain the purposed methods for marker recognition, vision-based unmanned aerial vehicle’s localization and their movement coordination. We introduce the preproduction model of our navigation system based on open-source projects.

Keywords:

unmanned aerial vehicles, vision-based navigation, control system.

pp. 68-77

References

1. Adams S. M., Friedland C. J. A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management // 9th International Workshop on Remote Sensing for Disaster Response. – 2011. – С. 8.
2. Nebiker S. et al. A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing // The international archives of the photogrammetry, remote sensing and spatial information sciences. – 2008. – Т. 37. – №. B1. – С. 1193-1199.
3. Nex F., Remondino F. UAV for 3D mapping applications: a review // Applied Geomatics. – 2014. – Т. 6. – №. 1. – С. 1-15.
4. Ruffier F. et al. Bio-inspired optical flow circuits for the visual guidance of micro air vehicles // Circuits and Systems, 2003. ISCAS'03. Proceedings of the 2003 International Symposium on. – IEEE, 2003. – Т. 3. – С. III-III.
5. Макаров Д.А., Панов А.И., Яковлев К.С. Архитектура многоуровневой интеллектуальной системы управления беспилотными летательными аппаратами // Искусственный интеллект и принятие решений, 3, 2015. C.18-32.
6. Архипкин А.В., Комченков В.И., Корольков Д.Н., Петров В.Ф., Симонов С.Б., Терентьев А.И. Задачи группового управления роботами в робототехническом комплексе пожаротушения // Труды СПИИРАН. 2016. Вып. 45. C. 116-129.
7. Ронжин Андрей Леонидович, Юсупов Рафаэль Мидхатович Многомодальные интерфейсы автономных мобильных робототехнических комплексов // Известия ЮФУ. Технические науки. 2015. №1 (162). С.195-206
8. Finn R. L., Wright D. Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications //Computer Law & Security Review. – 2012. – Т. 28. – №. 2. – С. 184-194.
9. Grenzdörffer G. J., Engel A., Teichert B. The photogrammetric potential of low-cost UAVs in forestry and agriculture // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – 2008. – Т. 31. – №. B3. – С. 1207-1214.
10. Jordan B. R. A bird’s-eye view of geology: The use of micro drones/UAVs in geologic fieldwork and education // GSA Today. – 2015. – Т. 25. – №. 7. – С. 50-52.
11. Metge J. et al. Dynamic magnetic field compensation for micro UAV attitude estimation // Unmanned Aircraft Systems (ICUAS), 2013 International Conference on. – IEEE, 2013. – С. 725-733.
12. Яковлев К.С., Петров А.В., Хитьков В.В. Программный комплекс навигации и управления беспилотными транспортными средствами // Информационные технологии и вычислительные системы, 3, 2013. С. 72-83.
13. Яковлев К. С. и др. Система навигации группы БЛА на основе маркеров // Робототехника и техническая кибернетика. – 2014. – №. 4. – С. 44-48.
14. Sebesta K. D., Boizot N. A real-time adaptive high-gain EKF, applied to a quadcopter inertial navigation system // IEEE Transactions on Industrial Electronics. – 2014. – Т. 61. – №. 1. – С. 495-503.
15. Wang F. et al. An efficient uav navigation solution for confined but partially known indoor environments // Control & Automation (ICCA), 11th IEEE International Conference on. – IEEE, 2014. – С. 1351-1356.
16. Wang F. et al. A mono-camera and scanning laser range finder based UAV indoor navigation system // Unmanned Aircraft Systems (ICUAS), 2013 International Conference on. – IEEE, 2013. – С. 694-701.
17. Siebert S., Teizer J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system // Automation in Construction. – 2014. – Т. 41. – С. 1-14.
18. Scaramuzza D. et al. Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments //IEEE Robotics & Automation Magazine. – 2014. – Т. 21. – №. 3. – С. 26-40.
19. Achtelik M. et al. Sfly: Swarm of micro flying robots // Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. – IEEE, 2012. – С. 2649-2650.
20. Saska M. et al. Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles //Journal of Intelligent & Robotic Systems. – 2016. – Т. 84. – №. 1-4. – С. 469-492.
21. Shi Y., Eberhart R. C. Empirical study of particle swarm optimization //Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. – IEEE, 1999. – Т. 3. – С. 1945-1950.
22. Sanchez-Lopez J. L. et al. A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-uav systems: Simulation and experimentation // Journal of Intelligent & Robotic Systems. – 2016. – Т. 84. – №. 1-4. – С. 779-797.
23. Quigley M. et al. ROS: an open-source Robot Operating System // ICRA workshop on open source software. – 2009. – Т. 3. – №. 3.2. – С. 5.
24. Kam H. R. et al. RViz: a toolkit for real domain data visualization // Telecommunication Systems. – 2015. – Т. 60. – №. 2. – С. 337-345.
25. Garrido-Jurado S. et al. Automatic generation and detection of highly reliable fiducial markers under occlusion //Pattern Recognition. – 2014. – Т. 47. – №. 6. – С. 2280-2292.
26. Deng G., Cahill L. W. An adaptive Gaussian filter for noise reduction and edge detection // Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record. – IEEE, 1993. – С. 1615-1619.
27. Hast A., Nysjö J., Marchetti A. Optimal ransac-towards a repeatable algorithm for finding the optimal set. – 2013.
28. Quan L., Lan Z. Linear n-point camera pose determination //IEEE Transactions on pattern analysis and machine intelligence. – 1999. – Т. 21. – №. 8. – С. 774-780.
29. Забегаев А. Н., Павловский В. Е. Адаптация фильтра Калмана для использования с локальной и глобальной системой навигации //Препринты Института прикладной математики им. МВ Келдыша РАН. – 2010. – №. 0. – С. 82-24.
30. Трушков В.В., Хачумов В.М. Определение ориентации объектов в трехмерном пространстве − Автометрия, № 3, 2008, с. с.75-79.

2018 / 03
2018 / 02
2018 / 01
2017 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".