INTELLIGENT SYSTEMS AND TECHNOLOGIES
COMPUTING SYSTEMS
V. A. Raikhlin, R. K. Klassen Relatively inexpensive hybrid technology of large volumes conservative DBMS
PATTERN RECOGNITION
CONTROL AND DECISION-MAKING
V. A. Raikhlin, R. K. Klassen Relatively inexpensive hybrid technology of large volumes conservative DBMS

Abstract

In article are discussed the issues of organization of conservative DBMS on comparatively inexpensive cluster platforms using MySQL and GPU-accelerators at the executive level. The relevance of the adopted orientation for work with large-scale databases is determined by current trends in the intellectual processing of large information arrays. Increasing the size of databases requires them to be hashed over cluster nodes. This necessitates the use of a regular query plan. The use of homogeneous cluster technologies (DBMS Clusterix with the optimal configuration "combined symmetry") requires an additional dynamic segmentation of intermediate and temporal relationships. Hybrid technologies (Clusterix-N and Clusterix- G projects) are proposed for managing large-scale databases, which allows excluding dynamic segmentation and significantly improving efficiency by the criterion of productivity / cost. In them, the data is located in nodes RAM. A distinctive feature of the Clusterix-G DBMS with GPU accelerators is the work with compressed databases, which allows increase their data volume on nodes with limited amount of memory. The proposed technologies are more efficient in comparison with lusterix, and the Clusterix-G performance should exceed Clusterix-N for medium speed interconnect.

Keywords:

Conservative DBMS. Big data. Affordable cluster platforms. Regular query plan. Hybrid technologies. Databases compression. Application of graphic accelerators. Comparative assessments of efficiency and productivity.

pp. 46-59

References

1. Szalay A.S. The Sloan Digital Sky Survey and beyond //SIGMOD Record. 2008. Vol.37, No.2. P. 61–66.
2. Shiers J. The Worldwide LHC Computing Grid (worldwide LCG) //Computer Physics Communications. 2007. Vol. 177 No. 1-2. P. 219–223.
3. Taniar D., Leung C., Rahayu J. W. High-performance parallel database processing and grid databases. – John Wiley & Sons Inc., Hoboken, 2008.
4. Raikhlin, V.A. Simulation of Distributed Database Machines //Programming and Computer Software. Vol. 22, Issue 2, 1996, P. 68-74.
5. Abramov E.V. Parallel'naya SUBD Clusterix. Razrabotka prototipa i ego naturnoe issledovanie [Parallel DBMS Clusterix. Development of prototype and its full-scale studits] // Herald of KSTU named after A.N. Tupolev. Kazan. 2006. № 2. С.50-55.
6. Martin, J. Computer database organization. Second Edition – Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1977.
7. Raikhlin, V.A., Minjazev R.Sh. Mul'tiklasterizaciya raspredelennyx SUBD konservativnogo tipa [Multiclusterization of distributed DBMS of conservative type] // Nonlinear world. Vol.9. 2011. No.85. P.473-481.
8. Klassen R.K. Povyshenie e'ffektivnosti parallel'noj SUBD konservativnogo tipa na klasternoj platforme s mnogoyadernymi uzlami [Improving efficiency of parallel conservative type DBMS on a cluster platform with multi-core nodes] //Herald of KSTU named after A.N. Tupolev. 2015. No.1. P.112-118.
9. CoGaDB – Column-oriented GPU-accelerated DBMS. URL:http://cogadb.cs.tudortmund.de/wordpress.
10. PGStrom 2016. URL: https://wiki.postgresql.org/index.php?title=PGStrom&oldid=25517.
11. Besedin D. Pervyj vzglyad na DDR3. Izuchaem novoe pokolenie pamyati DDR SDRAM, teoreticheski i prakticheski [First look at DDR3. We study the new generation of DDR SDRAM memory, in theory and practically] //ixbt.com. 2007. URL: http://www.ixbt.com/mainboard/ddr3-rmma.shtml
12. Petrov S.V. Shiny PCI, PCI Express. Arxitektura, dizajn, principy funkcioniro-vaniya. [PCI bus, PCI Express. Architecture, design, principles of functioning.] // SPb.: BXV-Peterburg, 2006. 321-322 с.
13. Rauhe H. Finding the Right Processor for the Job Co-Processors in a DBMS, Ilmenau University of Technology, Ilmenau, Dissertation urn:nbn:de:gbv:ilm1-2014000240, 2014.
14. Wenbin F., Bingsheng H., Qiong L. Database Compression on Graphics Processors //Proc. VLDB  Endow., Vol. 3, No. 1-2, Sep 2010. P.670-680.
15. Raikhlin V.A., Klassen R.K. Can GPU-accelerator significantly increase the effectiveness of conservative DBMS considerable volumes on cluster platforms? //2017 International Siberian Conference on Control and Communications (SIBCON). 2017. P. 1-5. DOI: 10.1109/SIBCON.2017.7998474
16. Blelloch G. Introduction to Data Compression. Pittsburgh: Carnegie Mellon University, 2013. P.25-26.
17. Klassen R.K. Programma regional'noj balansirovki nagruzki k baze dannyx konser-vativnogo tipa na klasternoj platforme «PerformSys». [The program for regional load balancing to a conservative type database on the cluster platform «PerformSys».] Svidetel'stvo o gosudar-stvennoj registracii programmy dlya E'VM №2017611785 ot 09.02.2017. [Certificate of state registration of the computer program No. 2017611785 of 09.02.2017]
18. System x3950 X6 Rack Server | Lenovo (RU) URL: https://www3.lenovo.com/ru/ru/data-center/servers/missioncritical/System-x3950-X6/p/WMD00000002

 

 

2019 / 01
2018 / 04
2018 / 03
2018 / 02

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".