МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
АНАЛИЗ ДАННЫХ
П.Ю. Бойко, Е.М. Быков, Е.И. Соколов, Д.А. Яроцкий "Применение машинного обучения к ранжированию инцидентов на Московской железной дороге"
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ
РАСПРЕДЕЛЕННЫЕ СИСТЕМЫ
НОРМАТИВНАЯ БАЗА СИНТЕЗА АВТОМАТИЗИРОВАННЫХ СИСТЕМ
П.Ю. Бойко, Е.М. Быков, Е.И. Соколов, Д.А. Яроцкий "Применение машинного обучения к ранжированию инцидентов на Московской железной дороге"

Аннотация.

Московская железная дорога (МЖД) является крупной железнодорожной сетью, включающей в себя 8.8 тыс. км путей и 549 станций. МЖД оснащена несколькими десятками тысяч устройств автоматической регистрации отказов и предотказных состояний оборудования, сигналы которых обрабатываются операторами Центра управления содержанием инфраструктуры. Поток сигналов о возможных инцидентах создает большую нагрузку на операторов Центра. С целью оптимизации работы Центра была разработана основанная на машинном обучении система предварительного автоматического ранжирования инцидентов. Успешно внедренная предсказательная модель (ансамбль решающих деревьев) оценивает вероятность реального предотказного состояния по имеющимся признакам.

Ключевые слова:

мониторинг инфраструктуры железной дороги, ранжирование инцидентов, машинное обучение, отбор признаков, ансамбль решающих деревьев.

Стр. 43-53.

Полная версия статьи в формате pdf. 


REFERENCES

1. Horituchi, Yuji, Baba, Yukino, Kashima, Hisashi, Suzuki, Masahito, Kayahara, Hiroki, & Maeno, Jun. 2017. Predicting Fuel Consumption and Flight Delays for Low-Cost Airlines. In: Twenty-Ninth IAAI Conference.
2. Hebert, Jeff. 2016. Predicting rare failure events using classification trees on large scale manufacturing data with complex interactions. Pages 2024–2028 of: 2016 IEEE International Conference on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016.
3. Hastie, Trevor, Tibshirani, Robert, & Friedman, Jerome. 2001. The Elements of Statistical Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.
4. YDF’s Recommender System to Decrease Steelmaking Costs at Magnitogorsk Iron and Steel Works,
https://yandexdatafactory.com/ru/company/press/magnitogorsk-iron-steel-works-save-4-million-annually-data-analytics/
Accessed: 2017-02-25.
5. Mitchell, Thomas M. 1997. Machine Learning. 1 edn. New York, NY, USA: McGraw-Hill, Inc. Mustapha, Ismail Babajide, & Saeed, Faisal. 2016. Bioactive molecule prediction using extreme gradient boosting. Molecules, 21(8), 983.
6. Sheridan, Robert P, Wang, Wei Min, Liaw, Andy, Ma, Junshui, & Gifford, Eric M. 2016. Extreme Gradient Boosting as a Method for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling, 56(12), 2353–2360.
7. Kaggle. 2016. The Bosch Production Line Performance competition. https://www.kaggle.com/c/ bosch-production-lineperformance. Accessed: 2017-02-25.
8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
9. Chen, Tianqi, & Guestrin, Carlos. 2016. Xgboost: A scalable tree boosting system. arXiv preprint arXiv:1603.02754.
10. Friedman, Jerome H. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189–1232.
11. Cerqueira V., Pinto F., Sa C., Soares C. (2016) Combining Boosted Trees with Metafeature Engineering for Predictive Maintenance. In: Bostrom H., Knobbe A., Soares C., Papapetrou P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science, vol 9897. Springer, Cham.

 

2018 / 04
2018 / 03
2018 / 02
2018 / 01

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".