МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
С.В. Емельянов, А.П. Носов, В.З. Рахманкулов, А.А. Ахрем "Принципы и методы разработки моделей искусственной поджелудочной железы в виртуальной среде"
АНАЛИЗ ДАННЫХ
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ
РАСПРЕДЕЛЕННЫЕ СИСТЕМЫ
НОРМАТИВНАЯ БАЗА СИНТЕЗА АВТОМАТИЗИРОВАННЫХ СИСТЕМ
С.В. Емельянов, А.П. Носов, В.З. Рахманкулов, А.А. Ахрем "Принципы и методы разработки моделей искусственной поджелудочной железы в виртуальной среде"

Аннотация.

Рассматривается подход к решению проблемы создания искусственной поджелудочной железы, который базируется на методологии транспозиционного виртуального моделирования и нацелен на замещение функций саморегуляции уровня глюкозы в крови у лиц с нарушением углеводного обмена. Предложен комплексный подход к созданию автоматических систем стабилизации уровня глюкозы в крови, объединяющий основные этапы разработки моделей искусственной поджелудочной железы в единую концептуальную схему и использующий возможности виртуальной среды для автоматического формирования законов управления системой стабилизации.

Ключевые слова:

методология, информационные технологии, обработка данных, виртуальное моделирование, автоматическое управление.

Стр. 3-23.

S.V. Emelyanov, A.P. Nosov, V.Z. Rakhmankulov, A.A. Akhrem

"Principles and methods of artificial pancreas models design in virtual environment"

Abstract. The approach to design artificial pancreas based on substitutions function of self-regulation of blood glucose persons with violation of carbohydrate metabolism by a transpositional virtual model was considered. Integrated approach to design automatic stabilization systems of blood glucose level was developed. The approach aggregates the basic stages designing models of artificial pancreas to the unified concept and uses possibilities of virtual environment for automatic forming of the control laws of automatic stabilization systems.

Keywords: methodology, information sciences, data processing, virtual simulation, automatic control.

1. Akhrem А.А., Makarov I.М., Rakhmankulov V.Z. 2013. Matematicheskaya teoriya virtualizatzii prozessov proektirovaniya i transfera tekhnologii [The mathematical theory of the virtualization process engineering and technology transfer]. Мoscow: FIZMATLIT. 316 p.
2. http://www.kardiodom.ru/hirurgia/375.html
3. http://www.npf-galatea.ru/catalog/id/80
4. Emanuel V.L., Karyagina I.Yu., Emanuel Yu.V. 2003. Portativnye systemy samokontrolya i laboratornyi analis konzentratzii glukozy v krovi. Sravnitel'noe issledovanie [Portable self-monitoring systems and laboratory analysis of blood glucose concentration. Comparative study].
Available at: https://www.ramld.ru/articles/article.php?id=45. (accessed 2003).
5. Zisser H., Robinson L., Bevier W., Dassau E., Ellingsen C., Doyle F. J., and Jovanovic L. 2008. Bolus Calculator: A Review of Four “Smart” Insulin Pumps. Diabetes Technol. Ther. 10(6): 441–444.
6. Pickup JC, Keen H, Parsons JA, Alberti KG. 1978. Continuous subcutaneous insulin infusion: an approach to achieving normoglycaemia. BMJ. 1: 204–207
7. Mastrototaro JJ. 2000. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther. 2 (Suppl. 1): S13–S18. doi:10.1089/15209150050214078.
8. Bode BW. 2000. Clinical Utility of the Continuous Glucose Monitoring System. Diabetes Technol Ther. 2 (Suppl. 1): S35– S41. doi:10.1089/15209150050214104.
9. Gross TM., Bode BW., Einhorn D., Kayne DM., Reed JH., White NH., and Mastrototaro JJ. 2000. Performance evaluation of the MiniMed continuous glucose monitoring system during patient home use. Diabetes Technol Ther. 2(1): 49–56. DOI: 10.1089/152091500316737.
10. Tarasov Yu.V., Filippov Yu.I., Borisova E.A., Fedorova E.A., Mayorov A.Yu., Shestakova M.V. 2015. Tekhnologii nepreryvnogo monitorirovaniya glukozy: uspekhi i perspektivy [Continuous glucose monitoring technology: progress and prospects]. Problemy endokrinologii [Problems of Endocrinology]. 4: 54–72. doi: 10.14341/probl201561454-72.
11. Rodbard D. 2016. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol Ther. 18 (Suppl. 2): S2-3–S2-13. DOI: 10.1089/dia.2015.0417.
12. Insulin Pump Therapy and Continuous Glucose Monitoring. 2009. /Ed. by Pickup J. Oxford University Press. 118 р.
13. Sakharnyi diabet: diagnostika, lechenie, profilaktika [Diabetes: diagnosis, treatment, prevention] 2011. /Ed. by Dedov I.I., Shestakova M.V. Мoscow: ООО Izdatel'stvo Medicinskoe informatzionnoe agenstvo [Ltd. Publisher Medical News Agency]. 808 p.
14. Kadish A. H. 1964. Automation control of blood sugar. I. A servomechanism for glucose monitoring and control. Am J Med Electron. 3: 82–86.
15. Albisser A. M., Leibel B. S., Ewart T. G., Davidovac Z., Botz C. K., Zingg W. 1974. An artificial endocrine pancreas. Diabetes. 23 (5): 389–396.
16. Pfeiffer E. F., Thum C., Clemens A. H. 1974. The artificial beta cell — a continuous control of blood sugar by external regulation of insulin infusion (glucose controlled insulin infusion system). Hormone and Metabolic Research. 6(5): 339–342.
17. Mirouze J, Selam J. L., Pham T. C., Cavadore D. 1977. Evaluation of exogenous insulin homoeostasis by the artificial pancreas in insulin-dependent diabetes. Diabetologia. 13: 273–278.
18. Kraegen E. W, Campbell L. V., Chia Y. O, Meier H., Lazarus L. 1977. Control of blood glucose in diabetics using an artificial pancreas. International Medicine Journal. 7(3): 280–286.
19. Fogt EJ., Dodd LM., Ellen M. Jennlng EM., and Clemens AH. 1978. Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator). Clinical chemistry. 24(8): 1366–1372.
20. Shichiri M. Kawamori R., Yamasaki Y., Inoue M., Shigeta Y., and Abe H. 1978. Computer algorithm for the artificial pancreatic beta cell. Artificial Organs. 2(supplement): 247–250.
21. Yatabe T., Yamazaki R., Kitagawa H., et al. 2011. The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients. Crit Care Med. 39(3): 575–578.
22. Yatabe T., Hanazaki K., and Yokoyama M. 2012. Automating Blood Glucose Control. J Anesthe Clinic Res. 3: 186. doi:10.4172/2155-6148.1000186.
23. Bergman R. N., Ider Y. Z., Bowden C. R., and Cobelli C. 1979. Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236: E667–E677.
24. Blauw H., Keith-Hynes P., Koops R., and Devries JH. 2016. A Review of Safety and Design Requirements of the Artificial
Pancreas. Annals of Biomedical Engineering. Available at:
https://www.researchgate.net/publication/304582542_A_Review_of...

ancreas (Accessed 28 June 2016). DOI: 10.1007/s10439-016-1679-2.
25. Ziegler C., at all. 2015. Reduced Worries of Hypoglycaemia, High Satisfaction, and Increased Perceived Ease of Use after Experiencing Four Nights of MD-Logic Artificial Pancreas at Home (DREAM4). Journal of Diabetes Research. Article ID 590308, 8 pages. Available at: https://www.hindawi.com/journals/jdr/2015/590308/ (Accessed 5 March 2015).
http://dx.doi.org/10.1155/2015/590308
26. Steil GM., Rebrin K., Darwin C., Hariri F., and Saad MF. 2006. Feasibility of Automating Insulin Delivery for the Treatment of Type 1 Diabetes. Diabetes. 55: 3344–3350.
27. Steil GM., Palerm CC., Kurtz N., Voskanyan G., Roy A., Paz S., and Kandeel FR. 2011. The Effect of Insulin Feedback on Closed Loop Glucose Control. J Clin Endocrinol Metab. 96(5): 1402–1408.
28. Cobelli C., Renard E., and Kovatchev B. 2011. Artificial Pancreas: Past, Present, Future. Diabetes. 60(11): 2672–2682.
29. Doyle FJ., Huyett LM., Dassau E., Zisser HC. 2014. Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care. 37(May): 1191– 1197.
30. Peyser T., Dassau E., Breton M., and Skyler JS. 2014. The artificial pancreas: current status and future prospects in the management of diabetes. Ann. N.Y. Acad. Sci. 1311: 102–123. doi: 10.1111/nyas.12431
31. Kovatchev B., Tamborlane WV, Cefalu WT, and Cobelli C. 2016. The Artificial Pancreas in 2016: A Digital Treatment Ecosystem for Diabetes. Diabetes Care. 39(7): 1123–1126.
32. Kowalski AJ. 2009. Can we really close the loop and how soon? Accelerating the availability of an artificial pancreas: a roadmap to better diabetes outcomes. Diabetes Technol Ther. 11(Suppl. 1): S113–S119.
33. Kowalski AJ. 2015. Pathway to Artificial Pancreas Systems Revisited: Moving Downstream. Diabetes Care. 38(6): 1036-– 1043.
34. Haidar A., at all. 2013. Glucose-responsive insulin and glucagon delivery (dual-hormone artificial pancreas) in adults with type 1 diabetes: a randomized crossover controlled trial. CMAJ March 5. 185(4): 297–305. DOI:10.1503 /cmaj.121265.
35. Ilkowitz JT., Ramchandani N. 2016. Research Update — Closed Loop/Artificial Pancreas. US Endocrinology. 12(1): 31–36 DOI: http://doi.org/10.17925/USE.2016.12.01.31.
36. Steil GM., and Reifman J. 2009. Mathematical Modeling Research to Support the Development of Automated Insulin- Delivery Systems. Journal of Diabetes Science and Technology. 3(2): 388–395.
37. Kyungreem Han, Hyuk Kang, M. Choi, Jinwoong Kim, Myung-Shik Lee. 2012. Mathematical model of the glucose–insulin regulatory system: From the bursting electrical activity in pancreatic ?-cells to the glucose dynamics in the whole body.  Physics letters. A 376: 3150–3157.
38. Lombarte M., Lupo M., Campetelli G., Basualdo M., Rigalli A. 2013. Mathematical model of glucose–insulin homeostasis in healthy rats, Mathematical Biosciences. 245(2): 269–277.
39. Zimei Wu, Chee Kong Chui, Geok Soon Hong, Eric Khoo, Stephen Chang. 2013. Glucose–insulin regulation model with ubcutaneous insulin injection and evaluation using diabetic inpatients data. Computer methods and programs in biomedicine. 111: 347–356.
40. Palumbo P., Ditlevsen S., Bertuzzi A., De Gaetano A. 2013. Mathematical modeling of the glucose–insulin system: A review. Mathematical Biosciences. 244(2): 69–81.
41. Mingzhan Huang, and Xinyu Song. 2014. Modeling and qualitative analysis of diabetes therapies with state feedback control. International Journal of Biomathematics. 7(4): 1450035 (21 pages). Available at:
http://www.worldscientific.com/doi/abs/10.1142/S1793524514500351?af=R& (Accessed May 2014) DOI: 10.1142/S1793524514500351.
42. Turksoy K., and Cinar A. 2014. Adaptive Control of Artificial Pancreas Systems — A Review. Journal of Healthcare Engineering. 5(1): 1–22.
43. Steil GM. 2013. Algorithms for a Closed-Loop Artificial Pancreas: The Case for Proportional-Integral-Derivative Control. Journal of Diabetes Science and Technology. 7(6): 1621–1631.
44. Bequette BW. 2013. Algorithms for a Closed-Loop Artificial Pancreas: The Case for Model Predictive Control. Journal of Diabetes Science and Technology. 7(6): 1632–1643.
45. Makarov I.М., Akhrem А.А., Rakhmankulov V.Z. 2007. Modelirovanie i upravlenie slozhnymi kompyuternointegrirovannymi systemami [Modeling and control of complex computer-integrated systems]. Akademik I.M. Makarov i ego nauchnaya schkola. Izbrannye trudy. [Academician I.M. Makarov and his scientific school. Selected works]. Moscow: Science: 258–284.
46. Emelyanov S.V., Korovin S.K. 1997. Novye tipy obratnoii svyazi. Upravlenie pri neopredelennosti [New types of feedback. Control under uncertainty]. Мoscow: Science, Fizmatlit. 352 p.
47. Makarov I.М., Rakhmankulov V.Z., Akhrem А.А. 2007. Virtualnoe modelirovanie i intellektual'noe upravlenie slozhnymi kompyuterno-integrirovannymi systemami [Virtual modeling and intelligent management of complex computer-integrated systems] Informationnye tekhnologii i vychislitel'nye systemy [Information technology and computer systems]. 2:. 11–24.
48. Rakhmankulov V.Z. 2011. Khranilischa dannykh i biznes-intellekt: ot dannykh k znaniyam [Data warehouse and business intelligence: from data to knowledge] Vestnik RFFI [RFBR Herald] 2–3 (70–71): 32–54.
49. Paklin N., Oreshkov B. 2013. Biznes-analitika: ot dannykh k znaniyam. Uchebnoe posobie [Business Intelligence: from data to knowledge. Tutorial] Sankt-Petersburg: Piter. 704 p.
50. Akhrem А.А. 1985. Geometricheskii kriterii integral'noii razdelennosti dlya lineinykh system differential'nykh uravnenii [Geometric criterion integrated separately for linear systems of differential equations]. Uspekhi matematicheskikh nauk [Successes of Mathematical Sciences]. 40(5): 228–229.
51. Bylov B.F., Izobov N.A. 1969. Neobkhodimye i dostatochnye usloviya ustoichivosti kharakteristicheskikh pokazatelei diagonal'noii systemy [Necessary and sufficient conditions for the stability of the characteristic exponents of the system of diagonal]. Differential'nye uravneniya [Differential equations]. 5(10): 1785–1798.
52. Millionshchikov V.M. 1981. Berovskie klassy funkziyi i pokazatelei Lyapunova. IV [Baire classes of functions and Lyapunov exponents. IV]. Differential'nye uravneniya [Differential equations]. 17(3): 431–468.
53. Pliss V.A. 1977. Integral'nye mnogestva periodicheskikh system differential'nykh uravneniyi [Integral sets of periodic systems of differential equations]. Мoscow: Science. 304 p.
54. Tonkov E.L. 1995. Zadachi upravleniya pokazateliami Lyapunova [Lyapunov exponents control Tasks]. Differential'nye uravneniya [Differential equations]. 31(10): 1682–1686.
55. Demidovich B.P. 1967. Lekzii po matematicheskoi teorii ustoyichivosti [Lectures on the mathematical theory of stability]. Мoscow: Science. 472 p.
56. Akhrem А.А. 1985. Ob odnom svoistve spetzial'nogo klassa lineinykh periodicheskikh system [A property of a special class of linear periodic systems]. Differential'nye uravneniya [Differential equations]. 21(5): 914–915.
57. Akhrem А.А. 1982. Nekotorye svoistva spetzial'nogo klassa lineinykh systerm [Some properties of a special class of linear systems]. Differential'nye uravneniya [Differential equations]. 18(6): 1098–1099.

2017 / 03
2017 / 02
2017 / 01
2016 / 04

© ФИЦ ИУ РАН 2008-2016. Создание сайта "РосИнтернет технологии".