REVIEWS
AUTOMATIC CONTROL METHODS AND ALGORITHMS
QUANTUM INFORMATICS
D.I. Sergeev Formation of basic ideas in quantum computer science
DATA ANALYSIS
MACHINE LEARNING
MODELING TECHNIQUES
BUSINESS PROCESS OPTIMIZATION
D.I. Sergeev Formation of basic ideas in quantum computer science

Abstract.

In article some basic concepts and ideas of quantum computer science are considered. Much attention is paid to key properties of quantum systems – the quantum superposition and a quantum entanglement, which allows to realize the advantage of quantum parallel computing and quantum networks. The communications protocol of quantum teleportation is explained. Some results of creation of quantum networks and quantum computers are discussed.

Keywords:

quantum computing, qubit, quantum superposition, quantum entanglement.

PP. 34-44.

REFERENCES

1. Schrödinger E. 2400 of the quantum theory // Schrödinger E. The selected works on a quantum mechanics. M.: Nauka, 1976. P. 254-260.
2. Ekert A., Zhizan N., Hattner B., Inamori X., Vaynfurter X. Quantum cryptography // D. Bouwmeester, A. Ekert, A. Zeilinger (Eds.) The Physics of Quantum Information. M.: Postmarket, 2002.
3. Steen E. Quantum computings. Izhevsk: "Regular and chaotic dynamics", 2000.
4. Wiesner S. Conjugate coding. SIGART News. 1983. 15. 78–88.
5. Holevo A.S. Some estimates of the amount of information transmitted by a quantum communication channel // Problems of information transmission. 1973. T. 9. No. 3. Pp. 3–11.
6. Manin Yu.I. Computable and not computable. M.: Sov. radio, 1980. P.15.
7. Benioff P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines // J. Stat. Phys. 1980. 22. 563.
8. Benioff P. Quantum mechanical Hamiltonian models of Turing machines // J. Stat. Phys. 1982. 29. 515–546.
9. Benioff P. Quantum mechanical model of Turing machines that dissipate no energy // Phys. Rev. 1982. Lett. 48. 1581–1585.
10. Feynman R. Simulating physics with computers // International Journal of Theoretical Physics. 1982. V.21. No 6/7, P.467–488.
11. Wootters W.K., Zurek W.H. A single quantum cannot be cloned // Nature. 299. 802–803 (1982).
12. Dieks D. Communication by EPR devices // Physics Letters. A 92 (6). 271–272.
13. Feynman R. Quantum mechanical computers // Optics News. February. 1985.
14. Deutsch D. Quantum theory, the Church – Turing principle and the universal quantum computer // Proc. Roy. Soc. Lond.
1985. A400, P. 97–117.
15. Deutsch D. Quantum computational networks // Proc. Roy. Soc. London. 1989. A 425. 73–90.
16. Shor P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer // SIAM Journal
on Computing. 26. 5. 1484–1509.
17. Guts A. K. Foundations of quantum Cybernetics. Omsk: CAN, 2008.
18. Holevo A. S. Introduction to the quantum theory of information. M.: MTsNMO, 2013.
19. Grover L.K. Quantum mechanics helps in searching for a needle in a haystack // Phys. Rev. Lett. 79. 325–328.
20. Jozsa R., Schumacher B. A new proof of the quantum noiseless coding theorem // J. Mod. Optics. 41. 2343–2349. 1994.
21. Schumacher B. Quantum coding // Phys. Rev. A. 51. 2738–2747. 1995.
22. Kachaev I. A. Quantum computings. Protvino: IFVE preprint. 2001.
23. Feynman R., Leighton R., Sands M. The Feynman lectures on physics. Issue 8. M.: Mir, 1966.
24. Boumeyster D., Tsaylinger A. Physics of quantum information: basic concepts // Boumeyster D., Ekert And., Tsaylinger A.
(Ads.) Physics of quantum information. M.: Postmarket, 2002.
25. Heisenberg Development of quantum mechanics / Modern quantum mechanics. Three Nobel report. M.-L.: Gostekhizdat, 1934.
26. Kronberg D. A., Ozhigov Yu. I., Chernyavsky A. Yu. Quantum informatics and quantum computer. M.: Max Press, 2011.
27. Nielsen M., Chuang I. Quantum computings and quantum information. M.: Mir, 2006.
28. Schrödinger E. The current state of a quantum mechanics // Achievements of chemistry. 1936. T.5. P. 390 (395–442).
29. Kilin S.Ya. Quantum information//Achievements of physical sciences. 1999. T.169. No. 5. P. 507-527.
30. Einstein A., Podolsky B., Rosen N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? //Phys. Rev. American Physical Society. 1935. Vol. 47. Iss. 10. P. 777–780. Available at:
http://ufn.ru/ufn36/ufn36_4/Russian/r364_b.pdf (accessed November 16, 2016).
31. Deutsch D. The fabric of reality. Izhevsk: "Regular and chaotic dynamics", 2001.
32. Greenberger D.M., Horne M.A., Zeilinger A. Multiparticle Interferometry and the Superposition Principle. Phys. Today. 46 (8). 22. 1993.
33. Bennett Ch., Brassard G., et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels // Physical Review Letters. 70. 1895. (1993).
34. Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurtner H., Zeilinger A. Experimental Quantum Teleportation. Nature. London. 390. 575. (1997).
35. Baumeister, D., Weinfurter H., Zeilinger A. Quantum dense coding and quantum teleportation // Baumeister D., Ekert A., Zeilinger A. (Ads.) The Physics of quantum information. M.: Postmarket, 2002.
36. Quantum cryptography. Available at: https://ru.wikipedia.org/wiki/Квантовая_криптография (accessed November 16, 2016).
37. Grosshans F. Quantum communications: Teleportation becomes streetwise // Nature Photonics. 10. 623–625. (2016). Available
at: http://www.nature.com/nphoton/journal/v10/n10/pdf/nphoton.2016.190.pdf (accessed November 16, 2016).
38. Qi-Chao Sun, Ya-Li Mao, Si-Jing Chen et al. Quantum teleportation with independent sources and prior entanglement distribution over a network // Nature Photonics. 10. 671–675. (2016). Available at:
http://www.nature.com/nphoton/journal/v10/n10/pdf/nphoton.2016.179.pdf (accessed November 16, 2016).
39. A quantum computer. Available at: https://ru.wikipedia.org/wiki/Квантовый_компьютер (accessed November 16, 2016).
40. D-Wave Systems. Available at: https://en.wikipedia.org/wiki/D-Wave_Systems (accessed November 16, 2016).
41. D-Wave Systems Previews 2000-Qubit Quantum System. Available at: http://www.dwavesys.com/press-releases/d-wavesystems-previews-2000-qubit-quantum-system (accessed November 16, 2016).
42. Dobrynin S. Quantum acceleration. Available at: http://www.svoboda.org/a/27423981.html (accessed November 16, 2016).
43. Google experiments suggest that the D-Wave computer exploits quantum phenomena. Available at:
http://news.mit.edu/2015/3q-scott-aaronson-google-quantum-computing-paper-1211 (accessed November 16, 2016).
 

2019 / 01
2018 / 04
2018 / 03
2018 / 02

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".