ОБЗОРЫ
МЕТОДЫ И АЛГОРИТМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
Д.А. Макаров "Подход к построению нелинейного управления в задаче слежения с коэффициентами, зависящими от состояния Часть II. Численные эксперименты"
КВАНТОВАЯ ИНФОРМАТИКА
АНАЛИЗ ДАННЫХ
МАШИННОЕ ОБУЧЕНИЕ
МЕТОДЫ МОДЕЛИРОВАНИЯ
ОПТИМИЗАЦИЯ БИЗНЕС-ПРОЦЕССОВ
Д.А. Макаров "Подход к построению нелинейного управления в задаче слежения с коэффициентами, зависящими от состояния Часть II. Численные эксперименты"

Аннотация.

В работе с помощью численного моделирования для слабонелинейных управляемых систем исследуется нелинейная обратная связь в задаче слежения за эталонной траекторией на конечном интервале времени, построенная с использованием матричных дифференциальных уравнений Риккати с коэффициентами, зависящими от состояния. Полученные результаты численных экспериментов сравниваются с результатами вдоль соответствующих линейных управлений.

Ключевые слова:

задача слежения, нелинейное управление, уравнения Риккати с зависящими от состояния коэффициентами, численное моделирование.

Стр. 20-33. 

Литература

1. Çimen T. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis // Journal of Guidance, Control, and Dynamics. 2012. Vol. 35. №. 4. Pp. 1025-1047.
2. Cloutier J.R. State-Dependent Riccati Equation Techniques: An Overview // Proc. American Control Conference. 1997. Vol. 2. Pp. 932-936.
3. Heydari A., Balakrishnan S.N. Path Planning Using a Novel Finite Horizon Suboptimal Controller // Journal of guidance, control, and dynamics. 2013. Vol. 36, No. 4. Pp. 1210-1214.
4. Heydari A., Balakrishnan S.N. Closed-Form Solution to Finite-Horizon Suboptimal Control of Nonlinear Systems // International Journal of Robust and Nonlinear Control. 2015. Vol. 25. №.15. Pp. 2687-2704.
5. Khamis A., Naidu D. Nonlinear optimal tracking using finite horizon state dependent Riccati equation (SDRE) //Proceedings of the 4th International Conference on Circuits, Systems, Control, Signals (WSEAS). 2013. Pp. 37-42.
6. A. Khamis, D.S. Naidu, A.M. Kamel. Nonlinear Finite-Horizon Regulation and Tracking for Systems with Incomplete StateInformation Using Differential State Dependent Riccati Equation // International Journal of Aerospace Engineering. Vol. 2014 (2014). 12 pages. http://dx.doi.org/10.1155/2014/178628
7. A. Khamis, C. Chen, D. S. Naidu. Tracking of a robotic hand via SD-DRE and SD-DVE strategies//The 2016 UKACC International Conference on Control (UKACC Control 2016), At Belfast, UK Conference Paper · August 2016. DOI: 10.1109/CONTROL.2016.7737638
8. Дмитриев М.Г., Макаров Д.А.. Гладкий нелинейный регулятор в слабо нелинейной системе управления с коэффициентами, зависящими от состояния. Труды Института системного анализа РАН, том 64, №4. – 2014, стр.53-58
9. Ю.Э. Даник, М.Г. Дмитриев, Д.А. Макаров. Один алгоритм построения регуляторов для нелинейных систем с формальным малым параметром //Информационные технологии и вычислительные системы, №4, 2015.-стр.35-44
10. Dmitriev M. G., Makarov D. A. The near optimality of the stabilizing control in a weakly nonlinear system with statedependent coefficients // AIP Conference Proceedings. Kazakhstan, Almaty, Sep. 7-10, Vol. 1759, 020013 (2016).
11. Макаров Д.А. Подход к построению нелинейного управления в задаче слежения с коэффициентами, зависящими от состояния. I. Алгоритм // Информационные технологии и вычислительные системы (направлено в редакцию).
12. Методы классической и современной теории автоматического управления: Учебник в 5-и тт.; 2-е изд., перераб. и доп. Т 4. Теория оптимизации систем автоматического управления / Под ред. К.А. Пупкова и Н.Д. Егупова. М.: Издательство МГТУ им. Баумана, 2004. - 744с.; ил.
13. Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Изд-во «Мир», 1977. 650 с.
14. http://www.asctec.de/uav-applications/research/products/asctec-hummingbird/
15. Schoellig A.P., Mueller F.L., D’Andrea R. Optimization-based iterative learning for precise quadrocopter trajectory tracking // Autonomous Robots. 2012. V.33. №.1-2. P. 103-127.


D.A. Makarov

"A nonlinear approach to a feedback control design for a tracking state-dependent problem Part II. Numerical simulations"

Abstract. The paper deals with investigation of nonlinear finite-horizon tracking control for weakly nonlinear control systems. That nonlinear tracking control is constructed using a differential matrix state-dependent Riccati equation. The obtained results of numerical simulations are compared with the results along the corresponding linear controls.

Keywords: tracking problem, nonlinear control, state-dependent Riccati equation, numerical simulation.

REFERENCES

1. Çimen T. 2012. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. Journal of Guidance, Control, and Dynamics. 35(4): 1025-1047.
2. Cloutier J.R. 1997. State-Dependent Riccati Equation Techniques: An Overview. Proc. American Control Conference. 2: 932-936.
3. Heydari A. and Balakrishnan S.N. Path Planning Using a Novel Finite Horizon Suboptimal Controller. 2013. Journal of guidance, control, and dynamics. 36(4): 1210-1214.
4. Heydari A. and Balakrishnan S.N. 2015. Closed-Form Solution to Finite-Horizon Suboptimal Control of Nonlinear Systems. International Journal of Robust and Nonlinear Control. 25(15): 2687-2704.
5. Khamis A. and Naidu D. 2013. Nonlinear optimal tracking using finite horizon state dependent Riccati equation (SDRE). Proceedings of the 4th International Conference on Circuits, Systems, Control, Signals (WSEAS). 37-42.
6. Khamis A., Naidu D.S. and Kamel A.M. Nonlinear Finite-Horizon Regulation and Tracking for Systems with Incomplete State Information Using Differential State Dependent Riccati Equation. International Journal of Aerospace Engineering. 2014 (2014): 12 pages. http://dx.doi.org/10.1155/2014/178628
7. Khamis A., Chen C. and Naidu D. S. 2016. Tracking of a robotic hand via SD-DRE and SD-DVE strategies. The 2016 UKACC International Conference on Control (UKACC Control 2016), Belfast, UK, August 2016. DOI: 10.1109/CONTROL.2016.7737638
8. Dmitriev M.G. and Makarov D.A. 2014. Smooth nonlinear controller in a weakly nonlinear control system with state-dependent coefficients. Proceedings of the Institute for System Analysis of RAS. 64(4): 53-58.
9. Danik Yu.E., Dmitriev M.G. and Makarov D.A. 2015. An algorithm for constructing regulators for nonlinear systems with the formal small parameter. Information technology and computer systems. 4: 35-44.
10. Dmitriev M.G. and Makarov D.A. 2016. The near optimality of the stabilizing control in a weakly nonlinear system with state-dependent coefficients. AIP Conference Proceedings. Kazakhstan, Almaty, Sep. 7-10. 1759. 020013 (2016).
11. Makarov D.A. 2017. A nonlinear approach to a feedback control design for a tracking state-dependent problem. I. An algorithm. Information technology and computer systems. (accepted by the editors of “Information Technologies And Computer Systems”).
12. Methods of classical and modern theory of automatic control: A textbook in 5 volumes; 2-nd ed., revised and enlarged. Volume 4. Theory of optimization of automatic control systems, edited by K.A. Pupkov and N.D. Egupov. 2004. Moscow: Publishing house MSTU. Bauman. 744p.
13. Kvakernaak H. and Sivan R. 1977. Linear optimal control systems. Moscow: Mir. 650 p.
14. http://www.asctec.de/uav-applications/research/products/asctec-hummingbird/
15. Schoellig A.P., Mueller F.L. and D’Andrea R. 2012. Optimization-based iterative learning for precise quadrocopter trajectory tracking. Autonomous Robots. 33(1): 103-127.
 

2017 / 03
2017 / 02
2017 / 01
2016 / 04

© ФИЦ ИУ РАН 2008-2016. Создание сайта "РосИнтернет технологии".