МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ
Н.С Абрамов, А.А. Талалаев, В.П. Фраленко "Интеллектуальный анализ телеметрической информации для диагностики оборудования космического аппарата"
ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ
РАСПОЗНАВАНИЕ ОБРАЗОВ
Н.С Абрамов, А.А. Талалаев, В.П. Фраленко "Интеллектуальный анализ телеметрической информации для диагностики оборудования космического аппарата"

Аннотация.

В работе предложены методы интеллектуального анализа телеметрической информации космического аппарата, решающие задачи прогнозирования и диагностики его подсистем. Для предобработки телеметрической информации используются нейронные сети различных конфигураций и модификация ZET-алгоритма. Описаны результаты кластеризации телеметрической информации нейронной сетью Кохонена. Показано, что разработанные методы способны решать задачи мониторинга и диагностики состояния подсистем космических аппаратов по телеметрическим данным.

Ключевые слова:

космический аппарат, мониторинг, контроль, диагностика, прогнозирование, метод, нейронные сети, интеллектуальный анализ, система, телеметрические данные.

Стр. 64-75. 

N.S. Abramov, A.A. Talalaev, V.P. Fralenko

"Intelligent telemetry data analysis for diagnosing of the spacecraft hardware"

This paper provide a method of spacecraft telemetry data mining, solves the problem of predicting and diagnosing its subsystems state. To solve these problems, the methods of pretreatment telemetry information using artificial neural networks of various configurations and modifications ZET-algorithm are offered. The results of clustering telemetry information by Kohonen neural network are described. It is shown that the developed methods are capable to solving tasks of monitoring and diagnostics of subsystems for spacecraft by telemetry data.

Keywords: spacecraft, monitoring, control, diagnostics, forecasting, method, neural networks, intelligent analysis system, telemetry data.

REFERENCES

1. Talalaev A.A., Tishchenko I.P., Fralenko V.P., Khachumov V.M. Analiz effektivnosti primeneniya iskusstvennykh neyronnykh setey dlya resheniya zadach raspoznavaniya, szhatiya i prognozirovaniya // Iskusstvennyy intellekt i prinyatie resheniy, № 2, 2008, s.24-33.
2. Talalaev A.A., Fralenko V.P. Kontrol i diagnostika datchikov polozheniya kosmicheskogo apparata // Iskusstvennyy intellekt i prinyatie resheniy, № 3, 2009, s.49-52.
3. Yemelyanova Yu.G., Konstantinov K.A., Pogodin S.V., Talalaev A.A., Tishchenko I.P., Fralenko V.P., Khachumov V.M. Neyrosetevaya sistema kontrolya datchikov uglov orientatsii i dalnosti kosmicheskogo apparata //Programmnye sistemy: teoriya i prilozheniya, № 1,2010, s.45-59.
4. Ganchenko V.V., Dudkin A.A., Inyutin A.V. i dr. Programmnaya neyrosetevaya sistema kontrolya kosmicheskoy telemetrii // «Iskusstvennyy intellekt» № 4, 2013, s.502-511.
5. Vorontsov V.A., Fedorov Ye.A. Razrabotka prototipa intellektualnoy sistemy operativnogo monitoringa i tekhnicheskogo sostoyaniya osnovnykh bortovykh sistemkosmicheskogo apparata // «Trudy MAI». Vypusk № 82, 2015, s.1-25.
6. Abramov N.S., Zadneprovskiy V.F., Talalaev A.A., Fralenko V.P. Primenenie iskusstvennykh neyronnykh setey v zadachakh kontrolya i diagnostiki podsistem kosmicheskikh apparatov // Sovremennye problemy nauki i obrazovaniya, № 3, 2014. URL:
http://www.science-education.ru/pdf/2014/3/296.pdf (data obrashcheniya: 12.11.2015).
7. Abramov N.S., Ardentov A.A., Yemelyanova Yu.G., Talalaev A.A., Fralenko V.P., Shishkin O.G. Arkhitektura sistemy monitoringa i prognozirovaniya sostoyaniya kosmicheskogo apparata // Programmnye sistemy: teoriya i prilozheniya, № 2, 2015, c.85-99.
8. Abramov N.S., Zadneprovskiy V.F., Talalaev A.A., Fralenko V.P., Khachumov M.V. Perspektivnaya sistema monitoringa i prognozirovaniya sostoyaniya kosmicheskogo apparata na osnove analiza integrirovannoy informatsii // Aviakosmicheskoe priborostroenie, № 6, 2015, s.33-48.
9. Vektornoe kvantovanie. URL:
http://dic.academic.ru/dic.nsf/ruwiki/836351 (data obrashcheniya: 12.11.2015).
10. Malyy Kosmicheskiy Apparat «Yubileynyy». URL:
http://sat.sibsau.ru/index.php?option=com_content&view=section&layout=blog&id=3&Itemid=2 (data obrashcheniya: 12.11.2015).
11. Riedmiller M. Braun H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks 1993 (ICNN 93). San Francisco, 1993.
12. Zagoruyko N.G. Metody raspoznavaniya i ikh primenenie. – M.: Sovetskoe Radio, 1972. – 207 s.
13. Tynkevich M.A. Chislennye metody analiza. – Kemerovo, 2002 . – 378 s.
14. Kohonen T. Self-Organizing Maps (Third Extended Edition), ISBN 3-540-67921-9, New York, 2001. – 501 p.

2017 / 02
2017 / 01
2016 / 04
2016 / 03

© ФИЦ ИУ РАН 2008-2016. Создание сайта "РосИнтернет технологии".