ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И СЕТИ
УПРАВЛЕНИЕ И ПРИНЯТИЕ РЕШЕНИЙ
Yu.E. Danik Stabilizing Controller for one Linear Discrete System with Control Constraints
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
ПРОГРАММНАЯ ИНЖЕНЕРИЯ
Yu.E. Danik Stabilizing Controller for one Linear Discrete System with Control Constraints
Abstract. 

This paper is devoted to the construction of a stabilizing controller in a discrete linear-quadratic stationary problem on a semiaxis with control constraints based on the extension principle. The asymptotic stability of the equilibrium point of the corresponding closed-loop system is established with the help of Malkin-Masser-Chetaev theorem. The results of numerical experiments demonstrating the obtained theoretical results are presented. 

Keywords: 

linear-quadratic discrete optimal control problem, control constraints, extension principle, stabilization. 

PP. 61-69.

DOI 10.14357/20718632210406 
 
References

1. Kwakernaak, H., and R. Sivan. 1972. Linear optimal control systems. New York: Wiley-interscience. 608 p.
2. Afanasyev, V. N., V.B. Kolmanovsky and V.R. Nosov. 1989. Matematicheskaja teorija konstruirovanija sistem upravlenija [Mathematical theory of control system de-sign]. Moscow: Higher School.
3. Mehrmann, V. L. 1991. The autonomous linear quadratic control problem: theory and numerical solution. Heidel-berg: Springer.
4. Naidu, D. S. 2002. Optimal control systems. CRC press.
5. Troshina, N. Ju. 2009. O reshenii diskretnoj linejno-kvadratichnoj zadachi optimal'nogo upravlenija [About solving a discrete linear-quadratic optimal control problem]. Izvestija Saratovskogo universiteta. Novaja serija. Serija Matematika. Mehanika. Informatika [News of Saratov University. A new series. Mathematics series. Mechanics. Computer science] 1: 52–60.
6. Milosz, M. et al. 2018. Optimisation of Discrete Processes with Bounded Control. Information Technology and Control. 4:684-690.
7. Dubovickij, A. Ja., and A. A. Miljutina. 1965. Zadachi na jekstremum pri nalichii ogranichenij [Extremum problems in the presence of constraints]. Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki [Journal of Computational Mathematics and Mathematical Physics] 3:395–453.
8. Krotov, V. F. 1962. Metody reshenija variacionnyh zadach na osnove dostatochnyh uslovij absoljutnogo minimum, I [Methods of solution of variational problems on the basis of sufficient conditions for absolute minimum, I]. Avtomatika i telemehanika [Automation and Remote Control] 12: 1571-1583.
9. Krotov, V. F. 1963. Metody reshenija variacionnyh zadach. II. Skol'zjashhie rezhimy, 2 [Methods for solving variational problems. II. Sliding modes]. Avtomatika i telemehanika [Automation and Remote Control] 5: 581–598.
10. Krotov, V. F. 1963. Metody reshenija variacionnyh zadach na osnove dostatochnyh uslovij absoljutnogo minimum, III [Methods of solution of variational problems on the basis of sufficient conditions for absolute minimum, III]. Avtomatika i telemehanika [Automation and Remote Control] 7: 1037–1046.
11. Krotov, V. F., and V. I. Gurman. 1973. Metody i zadachi optimal'nogo upravlenija [Methods and problems of optimal control.]. M.: Nauka. 448 p.
12. Gurman, V. I. 1997. Princip rasshirenija v zadachah upravlenija [The principle of expansion in management problems]. M.: Nauka. Fizmatlit. 288 p.
13. Cimen, T. 2008. State-dependent Riccati Equation (SDRE) control: A Survey. IFAC Proceedings Volumes. 2: 3761–3775.
14. Mracek, C., and J. Cloutier. 1998. Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. International Journal of Robust and Nonlinear Control. 4–5:401–433.
15. Afanas'ev, V. N. 2011. Upravlenie nelinejnymi ob'ektami s parametrami, zavisjashhimi ot sostojanija [Control of nonlinear objects with state-dependent parameters]. Avtomatika i telemehanika [Automation and Remote Control] 4:43–56.
16. Dmitriev, M., and D. A. Makarov. 2014. [A weak nonlinear regulator in a weakly nonlinear control system with efficiency]. [Proceedings of the ISA RAS] 64: 53–58.
17. Emel’yanov, S.V., Yu.E. Danik, M.G. Dmitriev, and D.A. Makarov. 2016. Stabilization of nonlinear discrete-time dynamic control systems with a parameter and state-dependent coefficients. Doklady Mathematics. 1:121–123.
18. Danik, Yu., and M. Dmitriev. 2021. The construction of stabilizing regulators sets for nonlinear control systems with the help of Padé approximations. Nonlinear Dynamics of Discrete and Continuous Systems. Springer International. 45–62.
19. Dmitriev, M. G., Z. N. Murzabekov, and G. A. Mirzakhmedova. 2021. Algoritm nahozhdenija obratnoj svjazi v zadache s ogranichenijami dlja odnogo klassa nelinejnyh upravljaemyh sistem [Algorithm for Finding Feedback in a Problem with Constraints for One Class of Nonlinear Control Systems]. Modelirovanie i analiz informacionnyh sistem [Modeling and analysis of information systems] 3:3220–233.
20. Kuznecov, N. V., and G.A. Leonov. 2005. Kriterii ustojchivosti po pervomu priblizheniju nelinejnyh diskretnyh system [Stability criteria for the first approximation of nonlinear discrete systems]. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mehanika. Astronomija [Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy] 2:1–9.
 
2022 / 02
2022 / 01
2021 / 04
2021 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".