МЕТОДЫ ОБРАБОТКИ ИЗОБРАЖЕНИЙ
РАСПОЗНАВАНИЕ ОБРАЗОВ
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
Yu. G. Phylippov, V. F. Nikitin, E. V. Mikhalchenko, L. I. Stamov Numerical Three-Dimensional Modeling of Detonation Wave Rotation in a Detonaton Engine
Yu. G. Phylippov, V. F. Nikitin, E. V. Mikhalchenko, L. I. Stamov Numerical Three-Dimensional Modeling of Detonation Wave Rotation in a Detonaton Engine

Abstract.

A three-dimensional numerical simulation of the combustion chamber of the engine with a rotating detonation wave (RDE) fed by hydrogen-air mixtures of different composition is carried out. A rotating detonation wave engine is a new type of engine capable of producing higher thrust than traditional engines based on the process of deflagration of a combustible mixture. The dynamic combustion process in RDE is more than 100 times faster than in the classical mode with slow deflagration combustion. This type of engine has a more efficient thermodynamic cycle. In numerical experiments, different compositions of the fuel mixture were tested, and different scenarios of the engine operation were obtained. In the computational domain, a regular grid of homogeneous cubic elements was used. Time-consuming parts of the numerical code were parallelized using the OpenMP technique. Calculations were carried out on the APK-5 with a maximum performance of 5.5 teraflops.

Keywords:

numerical simulation, detonation engine, chemical kinetics, deflagration, detonation, combustion chamber.

PP. 87-98.

DOI 10.14357/20718632190308

References

1. Braun E. M., Lu F. K., Wilson D. R., Camberos J. A. Airbreathing rotating detonation wave engine cycle analysis // Aerospace Science and Technology. 2013. Vol. 27. P. 201–208.
2. Smirnov N. N., Betelin V. B., Nikitin V. F., Phylippov Y. G., Koo J. Detonation engine fed by acetylene-oxygen mixture // Acta Astronautica. 2014. Vol. 104. P. 134-146.
3. Norden C. A., Schwer D., Schauer F., Hoke B., Cetegen B., Barber T. Thermodynamic modeling of a rotating detonation engine // Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA 2011-0803). 2011.
4. Philippov Y. G., Dushin V. R., Nikitin V. F., Nerchenko V. A., Korolkova N. V., Guendugov V. M. Fluid mechanics of pulse detonation thrusters // Acta Astronautica. 2012. Vol. 76. P. 115-126.
5. Nikitin V. F., Dushin V. R., Phylippov Y. G., Legros J. C. Pulse detonation engines: Technical approaches // Acta Astronautica. 2009. Vol. 64. P. 281-287.
6. Tan S., Li Q., Xiao Z., Fu S. Gas kinetic scheme for turbulence simulation // Aerospace Science and Technology. 2018. Vol. 78. P. 214-227.
7. Kim J. W., Kwon O. J. Modeling of incomplete combustion in a scramjet engine // Aerospace Science and Technology. 2018. Vol. 78. P. 397-402.
8. Lin L., Weng C., Chen Q., Jiao H. Study on the effects of ionization seeds on pulse detonation // Aerospace Science and Technology. 2017. Vol. 71. P. 128-135.
9. Norden C. A., Schwer D., Schauer F., Hoke B., Cetegen B., Barber T. Thermodynamic modeling of a rotating detonation engine // Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA 2011-0803). 2011.
10. Wei L. Jin Z., Shijie L., Zhiyong L., Fengchen Z. Experimental study on propagation mode of H2/Air continuously rotating detonation wave // International Journal of Hydrogen Energy. 2015. Vol. 40. P. 1980-1993.
11. Voitsekhovskii B. V. Stationary detonation // Doklady Akademii Nayk. 1959. Vol. 129 (6). P. 1254-1256.
12. Nicholls J.A., Cullen R. E., Ragland K. W. Feasibility Studies of a Rotating Detonation Wave Rocket Motor // Journal of Spacecraft and Rockets. 1966. Vol. 3 (6). P. 893-898.
13. Bykovskii F. A., Mitrofanov V. V., Vedernikov E. F. Continuous Detonation Combustion of Fuel-Air Mixtures // Combustion, Explosion, and Shock Waves. 1997. Vol. 33 (3). P. 344-353.
14. Bykovskii F. A., Vedernikov E. F. Continuous Detonation of a Subsonic Flow of a Propellant // Combustion, Explosion, and Shock Waves. 2003. Vol. 39 (3). P. 323-334.
15. Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous Spin Detonations // Journal of Propulsion and Power. 2006. Vol. 22 (6). P. 1204-1216.
16. Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous Spin Detonation in Ducted Annular Combustors // Application of Detonation to Propulsion, edited by G. Roy et al, Torus Press. 2004. P. 174-179.
17. Kindracki J., Wolanski P., Gut Z. Experimental Research on the Rotating Detonation in Gaseous Fuels-Oxygen Mixtures // Shock Waves. 2011. Vol. 21. P. 75-84.
18. Zhdan S. A., Bykovskii F. A., Vedernikov E. F. Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen- Oxygen Mixture // Combustion, Explosion, and Shock Waves. 2007. Vol. 43 (4). P. 449-459.
19. Shijie L., Zhiyong L., Weidong L., Wei L., Fengchen Z. Experimental Realization of H2/air Continuous Rotating Detonation in a Cylindrical Combustor // Combustion Science and Technology. 2012. Vol. 184 (9). P. 1302-1317.
20. Shijie L., Weidong L., Zhiyong L., Wei L. Experimental Research on the Propagation Characteristics of Continuous Rotating Detonation Wave Near the Operating Boundary // Combustion Science and Technology. 2015. Vol. 187. P. 1790-1804.
21. Jian S., Jin Z., Shijie L., Zhiyong L., Jianhua C. Effects of injection nozzle exit width on rotating detonation engine // Acta Astronautica. 2017. Vol. 140. P. 388-401.
22. Jianping W., Yetao S. Rotating Detonation Engine Injection Velocity Limit and Nozzle Effects on Its Propulsion Performance // Computational Fluid Dynamics. 2010. P. 789-795.
23. Yetao S., Meng L., Jianping W. Continuous Detonation Engine and Effects of Different Types of Nozzle on Its Propulsion Performance // Chinese Journal of Aeronautics. 2010. Vol. 23. P. 647-652.
24. Jie C., Dong W., Hu M., Ji-yang D., Dong-liang Y. Influence of axial length on rotating detonation engine // Journal of Aerespace Power. 2013. Vol. 28 (4). P. 844-849.
25. CHEMKIN. A software package for the analysis of gasphase chemical and plasma kinetics. CHE-036-1. Chemkin collection release 3.6. Reaction Design, September 2000.
26. Marinov N., Pitz W., Westbrook C., Hori M., Matsunaga N. An Experimental and Kinetic Calculation of the Promotion Effect of Hydrocarbons on the NO-NO2 Conversion in a Flow Reactor // Proceedings of the Combustion Institute. 1998. Vol. 27. P. 389-396.
27. Kee R. J., Miller J. A., Jefferson T. H. Chemkin: a general- purpose, problem-independent, transportable Fortran chemical kinetics code package. Sandia National Laboratories  Report SAND80-8003. 1980.
28. Wilcox D.C. Turbulence modeling for CFD. DCW Industries, Inc. La Canada, 1993.
29. Transport. A software package for the evaluation of gasphase, multicomponent transport properties. TRA-036-1, CHEMKIN collection, 2000.
30. Maas U., Pope S. B. Simplifying chemical kinetics: intrinsic  low-dimensional manifolds in composition space //  Combustion and Flame. 1992. Vol. 88. P. 239-264.
31. van Leer B. Towards the Ultimate Conservative Difference Scheme. A Second Order Sequel to Godunov's Method // J. Com. Phys. 1979. Vol. 32. P. 101–136.
32. Liou M.-S. A Sequel to AUSM: AUSM+ // J. Comput. Phys. 1996. Vol. 129. P. 364- 382.
33. Fletcher C.A.J. Computational Techniques for Fluid Dynamics I Fundamental and General Techniques. Springer- Verlag Berlin Heidelberg GmbH, 2006.
34. Smirnov N. N., Nikitin V. F., Stamov L. I., Altoukhov D. I. Supercomputing simulations of detonation of hydrogenair mixtures // International Journal of Hydrogen Energy. 2015. Vol. 40 (34). P. 11059–11074.
35. Smirnov N. N., Penyazkov O. G., Sevrouk K. L., Nikitin V. F., Stamov L. I., Tyurenkova V. V. Detonation onset following shock wave focusing // Acta Astronautica. 2017. Vol. 135. P. 114–130.
36. Smirnov N. N., Betelin V. B., Nikitin V. F., Stamov L. I., Altoukhov D. I. Accumulation of errors in numerical simulations of chemically reacting gas dynamics // Acta Astronautica.  Vol. 117. P. 338–355.
 

 

2019 / 03
2019 / 02
2019 / 01
2018 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".