Abstract.The article examines various aspects of the so-called "smart" or "digital" hospitals, the number of which in the world is more than 200. These are hospitals where information technologies are universally implemented, including the intellectual level of clinical decision support and business processes. It should ensure the improvement of the process and quality of medical care, administrative process and communication infrastructure, necessarily including the possibility of monitoring with sensors of equipment strengthened on the patient's body. The maximum full, if necessary, control of physiological parameters and the full availability of all the rest of the information about patients for all medical personnel in any place of its location and comfort for patients through the use of mobile applications and the Internet of things are a necessary condition for an smart hospital. The "smart" hospital is represented from the positions of the cyberphysical system. The architecture of the cyberphysical system in the considered variant of the digital hospital presupposes the intellectual analysis of any monitored datas. As a perspective, an expansion of the range of artificial intelligence methods is considered to support various solutions, mathematical models of physical processes and the application of robots. Keywords: eHealth, digital hospital, intellectual hospital, cyberphysical system, monitoring of physiological parameters, physical-and-mathematical modeling. PP. 3-14. DOI 10.14357/20718632180401 References 1. Kobrinsky, B., I. Tester, N. Demikova et al. 1998. A Multifunctional System of the National Genetic Register // Medinfo’98: Proceedings of 9th International Congress on Medical Informatics. Pt.1. Seoul. 121-125. 2. Handler, Th.J., and B.R. Hieb. 2007. Gartner's 2007 Criteria for the Enterprise CPR. Available at: http://rsept.wikispaces.com/file/view/Gartner_Criteria_for_the_Enter-prise_CPR_2007.pdf(accessed April 21, 2018). 3. Shul'man, E.I., and G.Z. Rot. 2004. Tsel' i zadachi vnedreniya klinicheskoj informatsionnoj sistemy novogo pokoleniya [The purpose and objectives of introducing a new generation clinical information system]. Vrach i informatsionnye tekhnologii [Physician and Information Technologies] 12:39-43. 4. Malykh, V.L., S.V. Rudetskij, and M.I. KHatkevich. 2016. Аktivnaya MIS [Active MIS]. Vrach i informatsionnye tekhnologii [Physician and Information Technologies] 6:16-24. 5. eHealth. Fifty-eighth world health assembly. Resolutions and decisions. Document A58/21. Ninth plenary meeting, 25 May 2005. Committee A, seventh report. P.121-123. Available at: http://apps.who.int/gb/archive/pdf_files/WHA58/A58_21- en.pdf (accessed April 13, 2018). 6. Monostori, L., B. Kádár, T. Bauernhansl et al. 2016. Cyber-physical systems in manufacturing. CIRP Annals. 65(2):621-641. 7. Dzhafarova, O.А., O.G. Donskaya, А.V. Sokolov, E.А. Tarasov, and M.B. Shtark. 2002. Programmno-apparatnyj kompleks BOSLАB [Software and hardware complex BOSLAB]. Bioupravlenie-4: Teoriya i praktika. Traektoriya razvitiya [Bio-control-4: Theory and practice. Trajectory of development]. M.B. Shtark, and M. Shvarts (otv. red.). Novosibirsk, TSEHRIS, 279-286. 8. Svyatogor, I.А., and I.А. Mokhovikova. 2002. Nejrofiziologicheskie, psikhologicheskie i klinicheskie aspekty bioupravleniya potentsialami mozga u bol'nykh s dezadaptatsionnymi rasstrojstvami [Neurophysiological, psychological and clinical aspects of brain potentials biocontrol in patients with disadaptive disorders] Bioupravlenie-4: Teoriya i praktika. Traektoriya razvitiya [Bio-control-4: Theory and practice. Trajectory of development]. M.B. Shtark, and M. Shvarts (otv. red.). Novosibirsk, TSEHRIS, 44-51. 9. Frisch, P. 2014. What is an intelligent hospital? IEEE Pulse. 5:10-15. 10. Borden, S. Digital hospital. 2001. MIT Technology Review. Available at: https://www.technologyreview.com/s/401089/digital-hospital/ (accessed February 23, 2018). 11. Holzinger, A., C. Rоcker, and M. Ziefle 2015. From smart health to smart hospitals. Smart Health: Open Problems and Future Challenges. A. Holzinger, C. Rоcker, and M. Ziefle (Eds.). Cham: Springer International Publishing Switzerland. 1–20. 12. HIMMS Analytics: Electronic medical record adoption model. 2017. Available at: https://www.himssanalytics.org/emram (accessed July 10, 2018). 13. Yoo, S., K.H., Lee, and H.J. Lee et al. 2012. Seoul National University Bundang Hospital's Electronic System for Total Care. Healthcare Informatics Research. 18(2):145–152. 14. Nazarenko, G.I., and G.S. Osipov. 2003. Meditsinskie informatsionnye sistemy i iskusstvennyj intellekt. Vyp.3. Pod nauch. red. akad. Yu.I. Zhuravleva / Seriya Informatsionnye sistemy v meditsine: Nauchnoe. posobie. [Medical information systems and artificial intelligence. Iss.3. Yu.I. Zhuravlev (Ed.). Series Information systems in medicine: A scientific manual]. Moscow: Medicine XXI. 240 p. 15. Karpov, O.Eh., E.B. Klejmenova, G.I., Nazarenko and G.I. Silaeva. 2016. Аvtomatizirovannoe proektirovanie meditsinskikh tekhnologicheskikh protsessov. Pod red. G.I. Nazarenko. [Computer-aided design of medical technological processes]. G.I. Nazarenko (Ed). Moscow: Business Express. 200 p. 16. Robokompleksy, Robosestry [Robocomplexes, Robonurses]. Medrobot.ru. 2015. Available at: http://medrobot.ru/nurse/ (accessed July 30, 2018). 17. Hendrickson, D. 2004. Study: RFID in hospitals shows ROI promise. Mass High Tech: The Journal of New England Technology. 15 p. Available at: http://masshightech.bizjournals.com/masshightech/ stories/2004/12/06/story9.html) (accessed December 10, 2017). 18. Nazarenko, G.I., E.B. Klejmenova, I.А. Ladokhin, E.V. Matrosova, M.А. Turov, А.А. Fomin, S.А. Payushhik, and L.P. Yashina. 2014. Sistema radiochastotnoj identifikatsii kak instrument vnedreniya "meditsinskogo tekhnologicheskogo protsessora" v mnogoprofil'noj bol'nitse [Radio-frequency identification system as a tool for introducing a "medical technological processor" in a multiprofile hospital]. Informatsionno-izmeritel'nye i upravlyayushhie sistemy [Information-measuring and control systems]. 12(10):75-81. 19. Chibaudel, Q., B. Joaquim, L.-N. Veronique, and M. Mounir. 2018. Human centered design conception applied to the Internet of Things: Contribution and interest. Smart Homes and Health Telematics, Designing a Better Future: Urban Assisted Living. 16th International Conference ICOST 2018. Singapore, July 10-12, 2018. Proceedings. M. Mounir, A. Bessam, and A. Hamdi (Eds.). Springer Intern. Publ AG, part of Springer Nature. 11-22. 20. Yu, L., Y. Lu, and X.J. Zhu. 2012. Smart Hospital based on Internet of Things. Journal of networks. 7(10):1654-1661. 21. Demin, V.V. 2005. Klinicheskoe rukovodstvo po vnutrisosudistomu ul'trazvukovomu issledovaniyu. [Clinical guidelines for intravascular ultrasound]. Orenburg: OJSCo IPK South Ural. 386 p. 22. Gavrilov, А.V., I.V. Аrkhipov, and I.V. Kulikov. 2012. Sovremennye informatsionnye tekhnologii dlya ob"ektivizatsii diagnostiki i lecheniya [Modern information technologies for the objectification of diagnosis and treatment]. Strategiya informatizatsii v meditsine. 17 printsipov i reshenij. Vtoroe izdanie [Informatization strategy in medicine. 17 principles and solutions. The second edition]. Moscow: Open Technologies, Problem Commission "Medical and Biological Cybernetics and Informatics" RAMS. 318-330. 23. Yatchenko, A.M., A.S. Krylov, A.V. Gavrilov, and I.V. Arkhipov. 2012. Building a three-dimensional dynamic model of left cardiac ventricle from ultrasonic data. Pattern Recognition and Image Analysis. 22(3):483-488. 24. Blankstein, R., and M.F. Di Carli. 2010. Integration of coronary anatomy and myocardial perfusion imaging. Nature Reviews Cardiology. 7(4):226-236. 25. Naghavi, M., P. Libby, E. Falk et al. 2003. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation. 108(15):1772-1778. 26. Anwaier, G., C. Chen, Y. Cao, and R. Qi. 2017. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. International Journal of Nanomedicine. 12:7681–7693. 27. Jaffer, F.A., and R. Weissleder. 2004. Seeing within: molecular imaging of the cardiovascular system. Circulation Research. 94(4):433-445. 28. Kietselaer, B.L., C.P. Reutelingsperger, G.A. Heidendal et al. 2004. Noninvasive detection of plaque instability with use of radiolabeled annex in A5 in patients with carotid-artery atherosclerosis. New England Journal of Medicine. 350(14):1472-1473. 29. Matter, C.M., P.K. Schuler, P. Alessi et al. 2004. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circulation Research. 95(12):1225-1233. 30. Gavrilov, А.V., I.V. Аrkhipov, I.V. Kulikov, E.А. Аkimova, and А.M. YAtchenko. 2014. Ot PACS k 3D tsifrovomu patsientu [From PACS to 3D digital patient]. Materialy XV Vserossijskoj konferentsii, ofitsial'nyj katalog "Informatsionnye tekhnologii v meditsine" [Proceedings of the XV All-Russian Conference, the official catalog "Information Technologies in Medicine"]. Moscow. 65-69. 31. Hood, L., and D.Galas. 2008. P4 Medicine: Personalized, Predictive, Preventive, Participatory. A Change of View that Changes Everything: A white paper prepared for the Computing Community Consortium committee of the Computing Research Association. 4 p. Available at: http://cra.org/ccc/resources/ccc-led-whitepapers/ (accessed November 30, 2017). 32. Pospelov, D.А. 1986. Situatsionnoe upravlenie: teoriya i praktika Situational control: theory and practice. Moscow: Nauka, Principal editorial office of physical and mathematical literature. 288 p. 33. Liu, T., A. Shen, X. Hu, G. Tong, and W. Gu. 2017. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model. Iranian Journal Public Health. 46(6):744-754. 34. Pickering, B.W., J.M. Litell, V. Herasevich, and O. Gajic. 2012. Clinical review: The hospital of the future – building intelligent environments to facilitate safe and effective acute care delivery. Critical Care. 16:220-231. 35. Zhang, J., and D.A. Norman. 1994. Representations in distributed cognitive tasks. Cognitive science. 18:87-122. 36. Nazarenko, G.I., E.B. Klejmenova, M.А. Konstantinova, O.P. Kashevskaya, and S.А. Payushhik. 2014. Sistema avtomatizatsii klinicheskikh rukovodstv i audita lecheniya (SАKRАL) v nevrologii [The system of automation of clinical guidelines and audit of treatment (SACRAL) in neurology]. Vrach [Physician]. 9:84-87.
|