ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ
МЕТОДЫ ОБРАБОТКИ ИНФОРМАЦИИ
S. E. Popov, V.P. Potapov The software for the ground displacements processing based on massively parallel processing system Apache Spark
РАСПОЗНАВАНИЕ ОБРАЗОВ
ГЛОБАЛЬНЫЕ ПРОЕКТЫ И РЕШЕНИЯ
ПРИКЛАДНЫЕ АСПЕКТЫ ИНФОРМАТИКИ
S. E. Popov, V.P. Potapov The software for the ground displacements processing based on massively parallel processing system Apache Spark

Abstract.

The Institute of Computational Technologies of SB RAS (ICT SB RAS), Novosibirsk, Russia The article devoted to the developing the software package for the processing radar images. It consider the ability of the visualization, configuration and running algorithms of main stages of the Persistent Scatterer method. The integration with the massively parallel processing system had shown the fast execution of calculations of the ground displacement algorithm. The paper includes main scheme of data streams routing in the Apache Spark tasks to demonstrate the network data swapping between system components in the real-time calculations. The software implementation presented as a web portal based on ReactJS+Redux components, including the automatic downloading and updating the Sentinel-1A radar database within native RESTful API. Using the approach of the Apache Spark code development paradigm allowed achieving the high performance in low execution time of calculation stages.

Keywords:

monitoring of the ground displacements, radar interferometry, massively parallel processing, radar satellite imagery.

PP. 44-59.

References

1. Bondur V.G., Savin A.I. 1992. Koncepcija sozdanija sistem monitoringa okruzhajushhej sredy v jekologicheskih i prirodnoresursnyh celjah [The conception of creating environmental monitoring systems for ecological and natural resources purposes]. Issledovanie Zemli iz kosmosa. 6:70-78.
2. Kantemirov Ju.I. 2013. Kosmicheskij radarnyj monitoring smeshhenij i deformacij zemnoj poverhnosti i sooruzhenij [Space
radar monitoring of displacements and deformations of the earth's surface and structures]. Vestnik SibGAU. 5(51):52-54.
3. Sbas Tutorial. Sarmap tutorials. Available at: http://sarmap.ch/tutorials/sbas_tutorial_V_2_0.pdf (accessed February 12, 2018)
4. Sousaa J. J., Hooperc J.A., Hanssenc R.F., Bastosd L.C., Ruize A.M. Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. // Remote Sensing of Environment. 2011. Vol. 115. № 10. P. 2652-2663
5. Oparin V.N., Sashurin A.D., Leont'ev A.V. i eds. 2012. Destrukcija zemnoj kory i processy samoorganizacii v oblastjah sil'nogo tehnogennogo vozdejstvija [The destruction of the Earth's crust and self-organization processes in areas of strong man-made impact]. Novosibirsk: Izd-vo SO RAN. 632 s.
6. Adushkin V. V., Oparin V. N. 2012. Ot javlenija znakoperemennoj reakcii gornyh porod na dinamicheskie vozdejstvija - k volnam majatnikovogo tipa v naprjazhennyh geosredah. Ch. І. [From the phenomenon of the alternating reaction of rocks to dynamic effects-to waves of a pendulum type in strained geo-environments]. Fiziko-tehnicheskie problemy razrabotki poleznyh iskopaemyh. 2:3-28
7. Musil M., Pleginger A. Discrimination between Local Microearthquakes and Quarry Blasts by Multi-Layer Perceptrons and Kohonen Maps // Bulletin of the Seismological Society of America, 1996. Vol. 86. No. 4. pp. 1077-1090.
8. Simmons A.D., Kerekes J.P., Raqueno N.G. Hyperspectral monitoring of chemically sensitive plant sentinels // Proceeding SPIE 7457. – Imaging Spectrometry XIV, 74570G, San Diego, CA. 2003. P. 45-51.
9. Lupjan E.A., Savin I.Ju., Bartalev S.A., Tolpin V.A., Balashov I.V., Plotnikov D.E. 2011. Sputnikovyj servis monitoringa sostojanija rastitel'nosti ("Vega") [Satellite monitoring service for the vegetation ("Vega")] Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 8(1):190-198.
10. Lavrova O. Yu., Loupian E.A., Mityagina M.I., Uvarov I.A., BocharovaT. Yu. See the Sea — Multi-User Information System Ocean Processes Investigations Based on Satellite Remote Sensing Data // Bollettino di Geofisica teorica ed applicata. An International Journal of Earth Sciences. 2013. Vol. 54. P.146-147.
11. Gordeev E.I., Girina O.A., Lupjan E.A., Kashnickij A.V., Uvarov I.A., Efremov V.Ju., Mel'nikov D.V., Manevich A.G., Sorokin A.A., Verhoturov A.L., Romanova I.M., Kramareva L.S., Korolev S.P. 2015. Izuchenie produktov izverzhenij vulkanov Kamchatki s pomoshh'ju giperspektral'nyh sputnikovyh dannyh v informacionnoj sisteme VolSatView [Studying of Kamchatka volcanic eruption products using hyperspectral satellite data in the VolSatView information system] Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 12(1):113-128.
12. Lupjan E.A., Bartalev S.A., Ershov D.V., Kotel'nikov R.V., Balashov I.V., Burcev M.A., Egorov V.A., Efremov V.Ju., Zharko V.O., Kovganko K.A., Kolbudaev P.A., Krasheninnikova Ju.S., Proshin A.A., Mazurov A.A., Uvarov I.A., Stycenko F.V., Sychugov I.G., Flitman E.V., Hvostikov S.A., Shuljak P.P. 2015. Organizacija raboty so sputnikovymi dannymi v informacionnoj sisteme distancionnogo monitoringa lesnyh pozharov Federal'nogo agentstva lesnogo hozjajstva (ISDM-Rosleshoz) [The workflow scheme of the satellite data in the information system for remote monitoring of forest fires at the Federal Forestry Agency (ISDMRosleskhoz)]. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 12(5): 222-250.
13. Takeuchi S., Yamada H. Monitoring of forest fire damage by using JERS-1 InSAR // Geoscience and Remote Sensing Symposium (IGARSS '02). – Toronto, Ontario, Canada. 2002. P. 3290-3292
14. Geohazard Tep. Available at: https://geohazards-tep.eo.esa.int/ (accessed February 15, 2018)
15. McLean S., Naftel J., Williams K. Microsoft .NET Remoting – 1st ed. – NY: Microsoft Press. 2003. 384 p.
16. Berman F., Wolski R. Application-Level Scheduling on Distributed Heterogeneous Networks // Supercomputing: Proceedings of the ACM/IEEE conference. – Pittsburgh, Pennsylvania USA, May 25-28, 1996. – IEEE Computer Society. 1996. P. 39-39.
17. Maheswaran M., Ali S. Dynamic Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Systems // Journal of Parallel and Distributed Computing. 1999. Vol. 59. No. 2. P. 107-131.
18. Laszewski G., Foster I. et al. CoG Kits: A Bridge between Commodity Distributed Computing and High-Performance Grids // Proceedings of the ACM Java Grande 2000 Conference. – San Francisco, CA, USA, June 3-5. – 2000. P. 97-106.
19. Yang T., Gerasoulis A. DSC: Scheduling Parallel Tasks on an Unbounded Number of Processors // IEEE Transactions on Parallel and Distributed Systems. 1994. Vol. 5. No. 9. P. 951-967.
20. Qusay H. Mahmoud. Distributed Java Programming with RMI and CORBA. Oracle Technology Network. Available at:
http://www.oracle.com/technetwork/articles/javase/rmi-corba-136641.html (accessed February 12, 2018)
21. Reyes-Ortiz J.L., Oneto,L., Anguita D. Big Data Analytics in the Cloud: Spark on Hadoop vs MPI/OpenMPI // INNS Conference on Big Data 2015: Conference proceedings. – San Francisco, USA, 8-10 August 2015. P. 121-130
22. Mavridis I., Karatza H. Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark // Journal of Systems and Software. 2017. Vol. 125. P. 133-151
23. Polato I., Ré R., Goldman A., Kon F. A comprehensive view of Hadoop research - A systematic literature review // Journal of Network and Computer Applications. 2014. Vol. 46. P. 1-25
24. Chen Xu. Big Data Analytic Frameworks for GIS (Amazon EC2, Hadoop, Spark) // Comprehensive Geographic Information Systems. 2017. Vol.1. P.148-152
25. Verbesselt. J. Big Data: Techniques and Technologies in Geoinformatics // International Journal of Applied Earth Observation and Geoinformation. 2015. Vol. 35. Part B. P. 368-369
26. Yang Chaowei, Yu Manzhu, Hu Fei, Jiang Yongyao, Li Yun. Utilizing Cloud Computing to address big geospatial data challenges // Computers, Environment and Urban Systems. 2017. Vol. 61. Part B. – P. 120-128
27. Hadoop, Storm, Samza, Spark, and Flink: Big Data Frameworks Compared. Digital Ocean. Available at:
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared
(accessed February 14, 2018)
28. Spark vs. Tez: What's the Difference? Xplenty. Available at: https://www.xplenty.com/blog/2015/01/apache-spark-vs-tezcomparison/  (accessed February 14, 2018)
29. Feature wise comparison between Apache Hadoop vs Spark vs Flink // TheServerSide. Available at:
http://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/Feature-wise-comparison-between-Apache-Hadoop-vs-Spark-vs-Flink (accessed February 22, 2018)
30. Sentinel 1 Toolbox // ESA Science toolbox exploration platform Available at: http://step.esa.int/main/toolboxes/sentinel-1-toolbox/ (accessed April 8, 2018)
31. STAMPS // A software package to extract ground displacements from time series of synthetic aperture radar (SAR) acquisitions. Available at: https://homepages.see.leeds.ac.uk/~earahoo/stamps/ (accessed April 8, 2018)
32. MATLAB API for Java // Mathworks Available at: https://www.mathworks.com/help/matlab/matlab-engine-api-forjava.
html (accessed April 8, 2018) 

2019 / 01
2018 / 04
2018 / 03
2018 / 02

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".