PROCESSING AND STORAGE
MATHEMATICAL MODELLING AND DATA ANALYSIS
Vasilii G. Kondakov Application of the CABARET scheme for the problem of a microscale meteorology model
NONLINEAR CONTROL SYSTEMS
PATTERN RECOGNITION
INTELLIGENT SYSTEMS
COMPUTING SYSTEMS AND NETWORKS
АPPLICATION
Vasilii G. Kondakov Application of the CABARET scheme for the problem of a microscale meteorology model

Abstract.

Proposed a new model for flow around buildings and obstacles. On the basis of the CABARET schemes, a conservative finite difference scheme of the Navier-Stokes equations is constructed with the equation of state of a weakly compressible medium in the isothermal approximation. Verification of the numerical scheme in the test case A1-1 from the CEDVAL project of the Meteorological Institute of the University of Hamburg was carried out. Statistical data are obtained for the comparison with experimental data over the averaged velocity field in control sections.

Keywords:

CABARET scheme, weakly compressible medium, microscale meteorology model

PP. 53-63.

References

1. Y.Q.Zhang, S.P.Arya, W.H.Snyder A comparison of numerical and physical modeling of stable atmospheric flow and  dispersion around a cubical building Atmospheric Environment, 1996, Vol.30, No.8, pp.1327-1345.
2. S.T.Chan, M.J.Leach A Validation of FEM3MP with Joint Urban 2003 Data J. of Applied meteorology and climatology, 2007, vol.46, pp.2127-2146.
3. CEDVAL project. Available at: www.mi.zmaw.de/CEDVAL_Validation_Data.427.0.html
4. Goloviznin V. M., Samarskii A. A. Finite difference approximation of convective transport equation with space splitting time derivative //Matematicheskoe Modelirovanie. – 1998. – Т. 10. – №. 1. – С. 86-100.
5. Goloviznin V. M., Samarskii A. A. Some characteristics of finite difference scheme “cabaret” //Matematicheskoe Modelirovanie. – 1998. – Т. 10. – №. 1. – С. 101-116.
6. Goloviznin V. M., Karabasov S. A., Kobrinskii I. M. Balance-characteristic schemes with separated conservative and flux variables //Matematicheskoe Modelirovanie. – 2003. – Т. 15. – №. 9. – С. 29-48.
7. Goloviznin V. M. Balanced characteristic method for 1D systems of hyperbolic conservation laws in Eulerian representation //Matematicheskoe Modelirovanie. – 2006. – Т. 18. – №. 11. – С. 14-30.
8. G.A. Faranosov, V.M. Goloviznin, S.A. Karabasov, V.G. Kondakov, V.F.Kopiev, M.A. Zaitsev, “CABARET method on unstructured hexahedral grids for jet noise computation”, Computer&Fluids, 2013, Vol. 88, pp.165-179.
9. VDI, 2005. Guideline 3783 Part 9, 2005-11. Environmental meteorology – Prognostic micro-scale wind field models – Evaluation for flow around buildings and obstacles. Beuth Verlag, Berlin.

2019 / 01
2018 / 04
2018 / 03
2018 / 02

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".