INTELLIGENCE SYSTEMS AND TECHNOLOGIES
COMPUTING SYSTEMS AND NETWORKS
V. I. Zubov, A. F. Albu On Methods for the Numerical Solution of one Spectral Problem
MATHEMATICAL MODELING
V. I. Zubov, A. F. Albu On Methods for the Numerical Solution of one Spectral Problem
Abstract. 

In the paper a comparative analysis of some methods for numerical solution of spectral problems that can be used to solve optimization problems in nanoelectronics is used. One of the goals of the analysis is to study the possibility of using variational methods to solve spectral problems. This approach seems preferable when solving multidimensional problems. Comparison of methods is carried out on the example of solving a one-dimensional spectral problem. It is concluded that the numerical-analytical method is effective in the one–dimensional case, and the variational method is effective in the multidimensional case.

Keywords: 

spectral problems, variational methods, Prufer transformation, numerical algorithms.

PP. 35-49.

DOI 10.14357/20718632220404
 
References

1. Zubkov, V.I. 2006. Modelirovanie vol't-faradnyh harakteristik geterostruktur s kvantovymi yamami s pomoshch'yu samosoglasovannogo resheniya uravnenij SHredingera i Puassona [Modeling capacitance–voltage characteristics of heterostructures with quantum wells using self-consistent   solution of Schrodinger and Poisson equations] // Fizika i tekhnika poluprovodnikov. 40(10): 1236–1240.
2. Marchuk, G.I., and Agoshkov, V.I. 1981. Vvedenie v proekcionno-setochnye metody [Introduction to projection-grid methods]. Moscow: Nauka. The main editorial office of the physical and mathematical literature, 416 p.
3. K. Rektoris. 1985. Variacionnye metody v matematicheskoj fizike i tekhnike [Variational methods in mathematical physics and engineering]. Moscow: Mir, 590 p.
4. Marchuk, G.I. 2022. Metody vychislitel'noj matematiki [Methods of computational mathematics]. Study guide. 4-rd eddition, Saint Petersburg: Lan, 608p.
5. Mihlin, S.G. 1970. Variacionnye metody v matematicheskoj fizike [Variational methods in mathematical physics]. Moscow: Nauka. The main editorial office of the physical and mathematical literature, 512 p.
6. Tan I-H., Snider, G.L., Chang, L.D., and Hu E.L. 1990. A self-consistent solution of Schrodinger-Poisson equations using a nonuniform mesh // Journal of Applied Physics. 68(8): 4071–4076.
7. Trikomi F. 1962. Differencial'nye uravneniya [Differential equations]. Moscow: Publishing House of Foreign Literature, 352 p.
8. Fedorenko R.P. 1994. Vvedenie v vychislitel'nuyu fiziku [Introduction to Computational Physics]. Moscow: Publishing House of the Moscow Institute of Physics and Technology, 528 p.
9. Petrov I.B. 2021. Vychislitel'naya matematika dlya fizikov [Computational mathematics for physicists]. Ucheb. posobie. Moscow: FIZMATLIT, 376 p. — ISBN 978-5- 9221-1887-3.
10. Bahvalov N.S., ZHidkov N.P., and Kobel'kov G.M. 2020. CHislennye metody [Numerical methods]. — 9-e izd. Moscow: Laboratoriya znanij, 636 p. — ISBN 978-5- 00101-836-0.
11. Yarar Z., and Ozdemir B., 2005. Ozdemir M. Mobility of electrons in a AlGaN/GaN QW: Effect of temperature, applied field, surface roughness and well width // Physica status solidi (b), 242(14): 2872–2884.
 

2024 / 01
2023 / 04
2023 / 03
2023 / 02

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".