I. A. Krivosheev, M. A. Linnik Identification Parameter for the Selection of Stego-Carriers
I. A. Krivosheev, M. A. Linnik Identification Parameter for the Selection of Stego-Carriers

The article proposes a number of identification parameters for images used in the transfer of information by steganography methods as stego-carriers. The developed algorithms make it possible to rank images in search of the most optimal, taking into account the peculiarities of the human visual system and individual structural features of the image. The experiments carried out show the work of the identification parameters and their compliance with the stated goals.


steganography, stego-carrier, stegoanalysis, determinant, LSB, RS-steganalysis, Chi-square stegoanalysis, bit-slice analysis.

PP. 41-48.

DOI 10.14357/20718632210304

1. Shelukhin, О. I., Kanaev, I.D. 2017. Steganografija. Algoritmy I programmnaja realizacija [Steganography. Algorithms and software implementation] Moskow: Hot line. 592 p.
2. Kokhanovich, GF, Puzyrenko, A.Y. 2006. Komp'juternaja steganografija. Teorija i praktika [Computer steganography. Theory and practice.]. К.: MK-Press,. 288 p.
3. Gribunin, V.G., Okov, I.N. 2002. Cifrovaja steganografija [Digital steganography] Moskow: Solon-press. 272 p.
4. Thung, K.H., Paramesran, R. A Survey of Image Quality Measures // TECHPOS, International Conference. 2009. pp. 1-4.
5. Noroozi, E., Daud, S. B. M., Sabouhi, A. Critical Evaluation on Steganography Metrics // Proceedings of 2011 International Conference on Electrical Engineering and Applications. 2013. pp. 927-931.
6. Bezzubik, V. V., Belashenkov, N.R. 2013. Opredelenie funkcii kontrastnoj chuvstvitel'nosti dlja sistem tehnicheskogo zrenija. [Determination of the contrast sensitivity function for vision systems.] // Izvestija vysshih uchebnyh zavedenij. Priborostroenie [Proceedings of higher educational institutions. Instrumentation]. 56(9): 73-79.
7. Shnayderman A., Gusev A., Eskicioglu A.M. An SVDBased Gray-Scale Image Quality Measure for Local and Global Assessment // IEEE Transactionson image processing. 2006. vol. 15. № 2. pp. 422-429.
8. Wang Z., Bovik A.C., Sheikh H.R. Image quality assessment: From error visibility to structural similarity // IEEE transaction on Image Processing. 2004. Vol. 13. № 4. pp. 600-612.
9. Setiadi D. PSNR vs SSIM: imperceptibility quality assessment for image steganography // Multimedia Tools and Applications. 2021. Vol. 80. №6. pp. 1-22.
10. Roy R., Changder S. Quality Evaluation of Image Steganography Techniques: A Heuristics based Approach // International Journal of Security and its Applications. 2016. Vol. 10. № 4. pp. 179-196.
11. Krivosheev, I.A., Linnik, M.A. 2020. Staticheskij sposob steganograficheskogo vstraivanija informacii na osnove LSB [Static way of steganographic information embedding based on LSB]. Sistemy i sredstva informatiki [Systems and Means of Informatics]. 30(3): 56-66.
12. Krivosheev, I.A., Linnik, M.A.., Kozhevnikova T.V. 2020. Sposob vstraivanija informacii v cvetnoe izobrazhenie [Method of embedding information into a color image] Patent RF No. 2738250.
13. Krivosheev, I.A., Linnik, M.A. 2017. K voprosu ob otsenke ustoychivosti steganograficheskoy sistemy [On the issue of assessing the stability of a steganographic system]. Uchenye zametki TOGU [TOGU Science Notes]. 8(2): 433-437.
14. Anisimov, B.V. 1983. Raspoznavanie i cifrovaja obrabotka izobrazhenij [Recognition and digital processing of images]. Moskow.: High School. 295 p.
15. Pfitzmann, A., Westfeld, A. Attacks on Steganographic Systems. Breaking the Steganographic Utilities EzStego, Jsteg, Steganos, and S-Tools and Some Lessons Learned. IH 1999. LNCS, 1768: pp. 61-76.
16. Gonzalez R., Woods R. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. Moskow: Tekhnosfera. 1072 p.

2022 / 02
2022 / 01
2021 / 04
2021 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".