DATA PROCESSING AND ANALYSIS
CONTROL AND DECISION-MAKING
A. A. Zhilenkov, S. G. Chernyi, A. Firsov Autonomous Underwater Robot Fuzzy Motion Control System for Operation under Parametric Uncertainties
MATHEMATICAL MODELING
INTELLIGENCE SYSTEMS AND TECHNOLOGIES
A. A. Zhilenkov, S. G. Chernyi, A. Firsov Autonomous Underwater Robot Fuzzy Motion Control System for Operation under Parametric Uncertainties
Abstract. 

The paper describes the design of a fuzzy motion control system of an autonomous underwater vehicle. A mathematical model of the underwater vehicle is synthesized. A fuzzy regulator for controlling the depth of immersion AUV is designed. The quality of control for step control, harmonic control, as well as various types of exogenous disturbances is investigated. The comparison of the functioning quality of the designed fuzzy controller with the PD controller is made. It is shown that the designed fuzzy controller provides a higher quality of control compared to the PD controller. The proposed fuzzy controller provides high quality control of the plant under uncertainties.

Keywords: 

maritime, controller, fuzzy, AUV, function/

PP. 50-57.

DOI 10.14357/20718632210106
 
References

1. Goheen, K.R., Jefferys, E.R.: Multivariable Self-Tuning Autopilots for Autonomous and Remotedly Operated Underwater Vehicles. IEEE Ocean Engineering, Vol.15, No.3, July 1990, pp.144-151.
2. Muraleedharan, R., Osadciw, L., 2006. Jamming attack detection and countermeasures in wireless sensor network using ant system. Proceedings of SPIE - The International Society for Optical Engineering 6248. doi:10.1117/12.666330
3. Marir, S., Chadli, M. Robust admissibility and stabilization of uncertain singular fractional-order linear timeinvariant systems. IEEE/CAA J. Autom. Sin. 6(3), 685–692 (2019).
4. Sokolov, S., Zhilenkov, A., Nyrkov, A., & Chernyi, S. (2017). The Use Robotics for Underwater Research Complex Objects. Advances In Intelligent Systems And Computing, 421-427. doi: 10.1007/978-981-10-3874-7_39
5. Zhilenkov, A., & Chernyi, S. (2019). Models and algorithms of the positioning and trajectory stabilisation system with elements of structural analysis for robotic applications. International Journal of Embedded Systems, 11(6), 806. doi: 10.1504/ijes.2019.104005
6. Q. Sun and J. Chen., Design of an Adaptive Depth Controller for an Autonomous Underwater Vehicle // IEEE 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, 2016, pp. 288-291.
7. D. Sain and B. Mohan, "Simulation and real-time implementation of a nonlinear fuzzy PI/PD controller", IFACPapersOnLine, vol. 53, no. 1, pp. 673-678, 2020. Available: 10.1016/j.ifacol.2020.06.112
8. Черный С.Г., Авдеев Б.А., Вынгра А.В. Разработка имитационной модели асинхронного электропривода с применением векторного управления, как компонента структурного программного модуля // Информационные технологии и вычислительные системы. 2020. № 2. С. 75-84.
9. H. Zhou, C. Zhang, S. Tan, Y. Dai and J. Duan, "Design of the footprints of uncertainty for a class of typical interval type-2 fuzzy PI and PD controllers", ISA Transactions, vol. 108, pp. 1-9, 2021. Available: 10.1016/j.isatra.2020.08.009
10. P. Liu, H. Gu, Y. Kang and J. Lü, "Global synchronization under PI/PD controllers in general complex networks with time-delay", Neurocomputing, vol. 366, pp. 12-22, 2019. Available: 10.1016/j.neucom.2019.07.028
 

2024 / 03
2024 / 02
2024 / 01
2023 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".