CONTROL SYSTEMS
E.V. Strashnov, M.A. Torgashev Suspension dynamics simulation of wheeled robots in virtual environment systems
DATA PROCESSING AND ANALYSIS
IMAGE PROCESSING METHODS
QUANTUM INFORMATICS
SECURITY ISSUES
E.V. Strashnov, M.A. Torgashev Suspension dynamics simulation of wheeled robots in virtual environment systems

Abstract.

One of the important and relevant areas of research is a real time simulation modeling of the wheeled robots motion in virtual environment systems. This problem leads to the wheel suspension dynamics simulation taking into account the influence of leaf springs, electric motors, etc. In this paper, the sequential impulses method for simulation of articulated bodies system is used, in which the system describes the main types of independent wheel suspensions. The proposed solution is based on the sequential impulses computation that ensure the constraints imposed on the coordinates and velocities of bodies. The developed methods and approaches for suspension dynamics simulation of wheeled robots were implemented in training complex that was created in SRISA RAS and was designed to train virtual robots control skills.

Keywords:

simulation modeling, wheeled robot, suspension, leaf spring, sequential impulses method, virtual environment system.

PP.

DOI 10.14357/20718632190203

References

1. Naumov, V.N., Mashkov, K.Yu., Kotiev, G.O, and etc. 2012. Metod matematicheskogo modelirovaniya pryamolinejnogo dvizheniya robotizirovannyh transportnyh sredstv po deformiruemomu gruntu [The method of mathematical modeling of the rectilinear movement of robotic vehicles on deformable soil] Inzhenernyj zhurnal: nauka i innovacii [Engineering Journal: Science and Innovation] 11:57-64.
2. Mihaylyuk, M.V., and Trushin, A.M. 2012. Modelirovanie dinamiki koles v virtual'nyh scenah [Modeling the dynamics of the wheels in virtual scenes] Trudy NIISI RAN [Proceedings of SRISA RAS] 2(1):47-53.
3. Kotiev, G.O., and Diakov, A.S. 2016. Metod razrabotki hodovyh sistem vysokopodvizhnyh bezehkipazhnyh nazemnyh transportnyh sredstv [Method of developing high-mobility suspension systems of unmanned ground vehicles] Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki [Proceedings of the Southern Federal University. Technical science] 174(1):186-197.
4. Universal Mechanism (UM). Available at: http://www.universalmechanism.com (accessed April 18, 2019).
5. Adams. Available at: https://www.mscsoftware.com/product/adams (accessed April 18, 2019).
6. Blundell M., and Harty D. 2004. The multibody systems approach to vehicle dynamics. New York, NY, USA: Elsevier Science and Technology Books. 518 p.
7. Rill G. 2011. Road vehicle dynamics: fundamentals and modeling. CRC Press. 331 p.
8. Alisejchik, A.P., and Pavlovskij, V.E. 2013. Model' i dinamicheskie ocenki upravlyaemosti i komfortabel'nosti dvizheniya mnogokolesnogo mobil'nogo robota [Model and dynamic assessment of the controllability and comfort of movement of a multi-wheeled mobile robot] Problemy upravleniya [Control Sciences] 1:70-78.
9. Gorelov, V.A., Komissarov, A.I., and Miroshnichenko, A.V. 2015. Modelirovanie kolesnogo transportnogo sredstva 8×8 v programmnom komplekse avtomatizirovannogo analiza dinamiki sistem tel [8×8 wheeled vehicle modeling in a multibody dynamics simulation software] Mezhdunarodnaya nauchno-tekhnicheskaya konferenciya “Prom-Inzhiniring” [International Conference on Industrial Engineering] 221-225.
10. Gorelov, V.A., Komissarov, A.I., and Kosicyn, B.B. 2016. Issledovanie dvizheniya avtomobilya v programmnom komplekse avtomatizirovannogo modelirovaniya dinamiki sistem tel [Study of the car movement in the software complex of automated modeling dynamics of bodies] ZHurnal avtomobil'nyh inzhenerov [Journal of Automotive Engineers] 96(1):18-23.
11. Samarskij, A.A., and Gulin, A.V. 1989. Chislennye metody [Numerical methods] Moscow: Science. 432 p.
12. Mihajlyuk, M.V., and Strashnov, E.V. 2014. Modelirovanie sistemy svyazannyh tel metodom posledovatel'nyh impul'sov [Simulation of articulated multibody system using sequential impulses method] Trudy NIISI RAN [Proceedings of SRISA RAS] 4(2):52-60.
13. Mihaylyuk, M.V., and Strashnov, E.V. 2015. Modelirovanie ogranichenij na otnositel'noe dvizhenie sharnirno svyazannyh tel [Simulation of restrictions for the relative motion articulated rigid bodies in virtual environment systems] Mekhatronika, Avtomatizatsiya, Upravlenie [Mechatronics, Automation, Control] 16(10):678-685.
14. Mihaylyuk, M.V., and Strashnov, E.V. 2016. Modelirovanie dinamiki sistemy svyazannyh tel s uchetom treniya v sharnirah [Simulation of articulated rigid bodies with joint friction] Nauka i Obrazovanie. MGTU im. N.E. Baumana [Science and Education of BMSTU] 1:108-124.
15. Strashnov, E.V., and Torgashev, M.A. 2016. Modelirovanie dinamiki ehlektroprivodov virtual'nyh robotov v imitacionno-trenazhernyh kompleksah [Simulation of the actuator dynamics of the virtual robots in the training complexes] Mekhatronika, Avtomatizatsiya, Upravlenie [Mechatronics, Automation, Control] 17(11):762-768.
16. Strashnov, E.V., Torgashev, M.A., and Timokhin, P.Yu. 2017. Modelirovanie pruzhin v sistemah virtual'nogo okruzheniya s pomoshch'yu metoda myagkih ogranichenij [Simulation of springs with soft constraints method in virtual environment systems] Informacionnye tekhnologii i vychislitel'nye sistemy [Journal of Information Technologies and Computing Systems] 3:70-78.
17. Shabana Ahmed A. 2010. Computational dynamics, 3rd edition, John Wiley & Sons Inc. 528 p.
18. Garstenauer H. 2006. A unified framework for rigid body dynamics, Johannes Kepler University Linz, Tech. Rep. 136 p.
19. Catto E. 2005. Iterative dynamics with temporal coherence, In Game Developer Conference. 1-24.
20. Stepien J. 2013. Physics-based animation of articulated rigid body systems for virtual environments. Gliwice. 183 p.
 

 

2019 / 03
2019 / 02
2019 / 01
2018 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".