ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
S. V. Pronichkin, S. V. Solodov, V. L. Arlazarov "SDABM Approach Based on Extended Multigraphs for Modeling Food Security"
УПРАВЛЕНИЕ И ПРИНЯТИЕ РЕШЕНИЙ
ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ
ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И СЕТИ
S. V. Pronichkin, S. V. Solodov, V. L. Arlazarov "SDABM Approach Based on Extended Multigraphs for Modeling Food Security"
Abstract.

This study proposes a comprehensive methodology for modeling the food security system based on the synthesis of system dynamics methods (SD), agent-based modeling (ABM) and the mathematical apparatus of extended multigraphs. An integrated hierarchical model has been developed, where the system-dynamic component formalizes long-term cause-and-effect relationships and balance loops (stock accumulation, soil fertility dynamics, financial flows), the agent-based component with fuzzy logic represents the behavior of heterogeneous actors (producers, logisticians, regulators), and extended multigraphs provide detailed modeling of asynchronous, parallel and spatio-temporal dependent trade flows of agricultural products, taking into account the ambiguity of information and multiple alternatives. The results demonstrate the effectiveness of the proposed platform for analyzing critical dependencies, identifying bottlenecks in supply chains, scenario forecasting and synthesizing adaptive management strategies that help increase the resilience of the national food security system to external shocks.

Keywords: 

food security, system dynamics, multi-agent modeling, extended multigraphs.

DOI 10.14357/20718632250405

EDN KDDIQL

Стр. 51-60.

References

1. Campbell M.L., Hewitt C.L., Le Chi T.U. Views on biosecurity and food security as we work toward reconciling an approach that addresses two global problems for a sustainable outcome. Cell Reports Sustainability. 2024. Vol. 1, Iss. 9. P. 100218. doi: 10.1016/j.crsus.2024.100218 
2. Qazi A., Al-Mhdawi M.K.S. Sustainability and adaptation dynamics in Global Food Security: A Bayesian Belief Network approach. Journal of Cleaner Production. 2024. Vol. 467. P. 142931. doi: 10.1016/j.jclepro.2024.142931 
3. Sasi M.B., Sarker R.A., Essam D.L. A novel heuristic algorithm for disruption mitigation in a global food supply chain. Computers & Industrial Engineering. 2024. Vol. 194. P. 110334. doi: 10.1016/j.cie.2024.110334
4. Yücesan E. Does deglobalization imply the end of global supply chains? International Business Review. 2025. P. 102398. doi: 10.1016/j.ibusrev.2025.102398
5. Nechaev V.I., Sandu I.S., Mikhaylushkin P.V. Features of implementing strategic directions for innovative development of the agrarian sector of the Russian economy in modern geopolitical conditions. Ekonomika sel'skogo khozyaistva Rossii. 2023. No. 1. Pp. 24–34. (In Russ)
6. Borzunov I.V., Kalitskaya V.V., Rykalina O.A. Economics of the Russian agro-industrial complex under sanctions. Agroprodovol'stvennaya ekonomika. 2025. No. 2. Pp. 61–69. (In Russ)
7. Krinnichnaya E.P. Problems of development of the agrarian sector of Russia and potential directions for their solution. Vestnik agrarnoi nauki. 2024. No. 6 (111). Pp. 101–112. (In Russ)
8. Arzhantsev S.A., Pisareva L.V., Kolyazina E.V. Improving measures of state support for innovative development of agricultural production. Ekonomika, trud, upravlenie v sel'skom khozyaistve. 2023. No. 2 (96). Pp. 170–184. (In Russ)
9. Isaeva O.V. Russian agro-export: Current state and development prospects. APK: ekonomika, upravlenie. 2023. No. 4. Pp. 33–40. (In Russ)
10. Ivoylova I.V. Development of Russian agro-export under geopolitical instability. Ekonomika i biznes: teoriya i praktika. 2024. No. 11-1 (117). Pp. 134–140. (In Russ)
11. Chepeleva K.V. Theoretical aspects of strategic management of exports of the Russian agro-industrial complex. Ekonomicheskie otnosheniya. 2024. Vol. 14, No. 4. Pp. 847–860. (In Russ)
12. Volodin V.M., Bareeva I.A. Features of agricultural development in the context of globalization. Ekonomika i predprinimatel'stvo. 2023. No. 6 (155). Pp. 691–699. (In Russ)
13. Aleksandrovskaya I.L., Stepanenko E.I., Kamaikina I.S. Assessment of import substitution for major types of food in Russia. Ekonomika, trud, upravlenie v sel'skom khozyaistve. 2025. No. 4 (122). Pp. 14–20. (In Russ)
14. Luchkovsky R.N. Impact of sanctions on Russian agriculture: Adaptation of the agro-industrial complex to new geoeconomic conditions. Ekonomika sel'skogo khozyaistva Rossii. 2024. No. 12. Pp. 20–25. (In Russ) 
15. Smirnov E.N., Karelina E.A., Pletnev M.G. Global architecture of agricultural trade: Modern triggers. Vestnik universiteta. 2024. No. 10. Pp. 142–149. (In Russ)
16. Wei Y., Qiu F., An H., Zhang X., Li C., Guo X. Exogenous oil supply shocks and global agricultural commodity prices: The role of biofuels. International Review of Economics & Finance. 2024. Vol. 92. Pp. 394–414. doi: 10.1016/j.iref.2024.02.011
17. Pacifico F., Ronchetti G., Dentener F., van der Velde M., van den Berg M., Lugato E. Quantifying the impact of an abrupt reduction in mineral nitrogen fertilization on crop yield in the European Union. Science of The Total Environment. 2024. Vol. 954. P. 176692. doi: 10.1016/j.scitotenv.2024.176692
18. Pan S., Ivanov D., Chutani A., Xing X., Jia Fu J., Huang G.Q. New normal, new norms: Towards sustainable and resilient global logistics and supply chain management. Transportation Research Part E: Logistics and Transportation Review. 2025. Vol. 201. P. 104276. doi: 10.1016/j.tre.2025.104276
19. Tamasiga P., Ouassou E.H., Onyeaka H., Bakwena M., Happonen A., Molala M. Forecasting disruptions in global food value chains to tackle food insecurity: The role of AI and big data analytics – A bibliometric and scientometric analysis. Journal of Agriculture and Food Research. 2023. Vol. 14. P. 100819. doi: 10.1016/j.jafr.2023.100819
20. Pizzileo G., Colizzi L., Guerriero E., Adamo T., Chiriacò M.V. Resource use efficiency and environmental sustainability in greenhouse agriculture through IoT-based irrigation and fertilization management. Smart Agricultural Technology. 2025. Vol. 12. P. 101180. doi: 10.1016/j.atech.2025.101180
21. Alazmi M., Alshammari M., Alabbad D.A., Abosaq H.A., Hegazy O., Alalayah K.M., Mustafa N.O.A., Zamani A.S., Hussain S. An IoT-Enabled Hybrid Deep Q-Learning and Elman Neural Network Framework for Proactive Crop Healthcare in the Agriculture Sector. Internet of Things. 2025. Vol. 33. P. 101700. doi: 10.1016/j.iot.2025.101700
22. Koch'yan G.A. Trends, technologies and innovations in agriculture. Ekonomika i predprinimatel'stvo. 2023. No. 2 (151). Pp. 476–480. (In Russ)
23. Kuz'mich N.P. Changes in labor conditions in the agrarian sector as a result of digital transformation of agriculture. Ekonomika, trud, upravlenie v sel'skom khozyaistve. 2023. No. 3 (97). Pp. 201–207. (In Russ)
24. Wang X., Chen T., Yuen K.F. A synthesised literature review of technology-based services: towards a paradoxical perspective on consumer-technology interactions. Journal of Business Research. 2025. Vol. 200. P. 115585. doi: 10.1016/j.jbusres.2025.115585
25. Małecka A., Pfajfar G. Conceptualizing consumer resistance in global consumer culture: framework and research agenda. International Marketing Review. 2025. Vol. 42, Iss. 7. Pp. 1–46. doi: 10.1108/IMR-03-2025-0143
26. Xu Z., Yao L. Opening the black box of water-energy-food nexus system in China: Prospects for sustainable consumption and security. Environmental Science & Policy. 2022. Vol. 127. Pp. 66–76. doi: 10.1016/j.envsci.2021.10.017 
27. Bera S., Giri B.C. Impact of consumer preferences on pricing and strategic decisions in a triopoly with heterogeneous smart sustainable supply chains. Expert Systems with Applications. 2024. Vol. 247. P. 123348. doi: 10.1016/j.eswa.2024.123348
28. Du S., Liu G., Li H., Zhang W., Santagata R. System dynamic analysis of urban household food-energy-water nexus in Melbourne (Australia). Journal of Cleaner Production. 2022. Vol. 379, Part 1. P. 134675. doi: 10.1016/j.jclepro.2022.134675
29. Xu Y., Szmerekovsky J. System dynamic modeling of energy savings in the US food industry. Journal of Cleaner Production. 2017. Vol. 165. Pp. 13–26. doi: 10.1016/j.jclepro. 2017.07.093
30. Li C., Xu H., He K. Meta-multigraph search: Rethinking meta-structure on heterogeneous information networks. Knowledge-Based Systems. 2024. Vol. 289. P. 111524. doi: 10.1016/j.knosys.2024.111524
31. Qin X.-W., Hao R.-X., Peng S.-L. Diagnosability of multigraph composition networks. Theoretical Computer Science. 2024. Vol. 988. P. 114375. doi: 10.1016/j.tcs.2023.114375
2025 / 04
2025 / 03
2025 / 02
2025 / 01

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".