ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ
V. A.Karyakina, V. A. Karnaushko, D. P.Nikolaev, V. V.Arlazarov, K. B.Bulatov, P. V. Bezmaternykh "BARdger: AIBoosted Configurable Barcode Scanning System"
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
УПРАВЛЕНИЕ И ПРИНЯТИЕ РЕШЕНИЙ
ОБРАБОТКА ИНФОРМАЦИИ И АНАЛИЗ ДАННЫХ
ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И СЕТИ
V. A.Karyakina, V. A. Karnaushko, D. P.Nikolaev, V. V.Arlazarov, K. B.Bulatov, P. V. Bezmaternykh "BARdger: AIBoosted Configurable Barcode Scanning System"
Abstract.

We present BARdger, a barcode scanning system that combines latest machine learning achievements, computationally efficient image processing techniques, and flexible configuration capabilities. It addresses actual challenges in barcode recognition, including damaged codes reading, variable lighting conditions, and diverse symbology support. The system architecture integrates lightweight neural networks optimized for parallel and high-performance processing with well-established procedures for reliable barcode reading. Its configurable design enables users to select AI models based on performance requirements, customize preprocessing stages without system recompilation, adjust recognition parameters on-the-fly, and execute it in a WebAssembly environment. We illustrate several notable system configurations and benchmark the BARdger over the BarBeR framework. The system provides a foundation for developing and integrating novel methods and algorithms in the field of barcode recognition, including challenges such as reading irregular matrix codes or those with significant blurring.

Keywords: 

barcode scanning, image processing, deep learning.

DOI 10.14357/20718632250401

EDN MFWYMK

PP. 3-16.

References

1. Palmer. R.C. The Bar Code Book: A Comprehensive Guide to Reading, Printing, Specifying, Evaluating, and Using Bar Code and Other Machine-readable Symbols; 2007. 470 p.
2. Melek C.G., Sönmez E.B., Varl S. Datasets and methods of product recognition on grocery shelf images using computer vision and machine learning approaches: An exhaustive literature review. Engineering Applications of Artificial Intelligence. 2024;133(7). doi: 10.1016/j.engappai.2024.108452.
3. Gernat T., Jagla T., Jones B.M., Middendorf M., Robinson G.E. Automated monitoring of honey bees with barcodes and artificial intelligence reveals two distinct social networks from a single affiliative behavior. Scientific Reports. 2023;13(1). doi: 10.1038/s41598-022-26825-4.
4. Zhang L., Rao A., Agrawala M. Adding conditional control to text-to-image diffusion models. In: IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. P. 3813–3824. doi: 10.1109/ICCV51070.2023.00355.
5. Tishin I.I., Valishina N., Shemiakina J.A., Bezmaternykh P.V. A robust approach for recognition of QR codes with cropped sides. In: Symposium on Pattern Recognition and Applications (SPRA). 2024;13540: 1354006–1–1354006–6, 2025. doi: 10.1117/12.3056712.
6. Zhu. X. Design of barcode recognition system based on YOLOv5. Journal of Physics: Conference Series. 2021 Shanghai, China; 1995; 012052. doi: 10.1088/1742-6596/1995/1/012052.
7. Chowdhury A., Rahman M., Sakib N. A study on multiple barcode detection from an image in business system. International Journal of Computer Applications. 2019;181:30–37. doi: 10.5120/ijca2019918340.
8. Dai X., Hsieh Y. Image-based discount and barcode recognition system. In: 12th International Conference on Artificial Intelligence, Soft Computing and Applications, 2022. P. 1–7. doi: 10.5121/csit.2022.122301.
9. Kusur C., Shirdhonkar M. S., Bachalapur M. M. An efficient parallel barcode recognition system. In: Proceedings of the Third International Conference on Cognitive and Intelligent Computing, Volume 1, Singapore, 2025. Springer Nature Singapore. P. 243–255. doi: 10.1007/978-981-97-9262-7_21.
10. Wudhikarn R., Charoenkwan P., Malang K. Deep Learning in Barcode Recognition: A Systematic Literature Review. IEEE Access. 2022;10:8049–8072. doi: 10.1109/ACCESS.2022.3143033.
11. Duan Z., Zhang Y., Li S. Binarization of nonuniform illumination barcode. In: International Conference on Machine Vision and Applications, New York, USA, 2018. ACM. P. 18–21. doi: https://doi.org/10.1145/3220511.3220520.
12. Ottaviani E., Pavan O., Bottazzi M., Brunelli E. A common image processing framework for 2D barcode reading. In Image Processing And Its Applications. 1999;2:652–655. doi: 10.1049/cp:19990404.
13. Gallo O., Manduchi R. Reading 1D barcodes with mobile phones using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011;33(9):1834–1843. doi: 10.1109/TPAMI.2010.229.
14. Martynov S., Bezmaternykh P.V. Aztec core symbol detection method based on connected components extraction and contour signature analysis. In: International Conference on Machine Vision (ICMV), 2020. doi: 10.1117/12.2559183.
15. Karrach L., Pivarciova E. Comparative study of Data Matrix codes localization and recognition methods. Journal of Imaging, MDPI. 2021;7(9):163. doi: 10.3390/jimaging7090163.
16. Mitrofanov D.G., Zlobin P.K., Shemiakina J.A., Bezmaternykh P.V. Precise localization of PDF417 code based on fast Hough transform. Vestnik YuUrGU “Vychislitelnaya matematika i informatika”. 2024;13(4):19–34. doi: https://doi.org/10.14529/cmse240402.
17. Muniz R., Junco L., Otero A. A robust software barcode reader using the Hough transform. In: Proceedings International Conference on Information Intelligence and Systems, 1999. P. 313–319. doi: 10.1109/ICIIS.1999.810282.
18. Zamberletti A., Gallo I., Albertini S., Noce L. Neural 1D barcode detection using the Hough transform. IPSJ Transactions on Computer Vision and Applications. 2014;7:1–9. doi: 10.2197/ipsjtcva.7.1.
19. Katona M., Nyul L. Efficient 1D and 2D barcode detection using mathematical morphology. 2013;7883(5). doi: 10.1007/978-3-642-38294-9_39.
20. Soros G., Florkemeier C. Blur-resistant joint 1D and 2D barcode localization for smartphones. In: Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia. ACM, 2013. P. 1–8. doi: 10.1145/2541831.2541844.
21. Usilin S.A., Bezmaternykh P.V., Arlazarov V.V. Fast approach for QR code localization on images using ViolaJones method. In: International Conference on Machine Vision (ICMV 2019), 2020. P. 114333G. doi: 10.1117/12.2559386.
22. Liu W., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A. SSD: Single shot multibox detector. 2016;9905(10):21–37, 10. doi: 10.1007/978-3-319-46448-0_2.
23. Zharkov A., Zagaynov I. Universal Barcode Detector via Semantic Segmentation. In: International Conference on Document Analysis and Recognition (ICDAR), 2019. P. 837–843. doi: 10.1109/ICDAR.2019.00139.
24. Hansen D., Nasrollahi K., Rasmussen C., Moeslund T. Real-time barcode detection and classification using deep learning. In: International Joint Conference on Computational Intelligence, SciTePress, 2017. P. 321–327. doi: 10.5220/0006508203210327.
25. Chen J., Dai N., Hu X., Yuan Y. A lightweight barcode detection algorithm based on deep learning. Applied Sciences. 2024;14(22). doi: https://www.mdpi.com/2076-3417/14/22/10417.
26. Qu Y., Zhang F. MGL-YOLO: A lightweight barcode target detection algorithm. Sensors. 2024;24(23). doi: https://www.mdpi.com/1424-8220/24/23/7590.
27. Ershova D.M., Gayer A.V., Bezmaternykh P.V., Arlazarov V.V. YOLO-Barcode: towards universal real-time barcode detection on mobile devices. Computer Optics. 2024;48(4):592–600. doi: 10.18287/2412-6179-CO-1424.
28. Vezzali E., Bolelli F., S. Santi, Grana C. State-of-the-art review and benchmarking of barcode localization methods. Engineering Applications of Artificial Intelligence. 2025;147:110259. doi: 10.1016/j.engappai.2025.110259.
29. Bezmaternykh P.V., Nikolaev D.P., Arlazarov V.L. Highperformance digital image processing. Pattern Recognition and Image Analysis. 2023;33(4):743–755. doi: 10.1134/S1054661823040090.
30. Zlobin P.K., Karnaushko V.A., Ershova D.M., SanchezRivero R., Bezmaternykh P.V., Nikolaev D.P. Lightweight neural network-based pipeline for barcode image preprocessing. Computer Optics. 2025; 49(6.2). doi: 10.18287/2412-6179-CO-1759.
31. Rybakova E.O., Limonova E.E., Bezmaternykh P.V. Improving Data Matrix mobile recognition via fast Hough transform and adaptive grid extractors. Computer Optics 2025; 49(6.2). doi: 10.18287/2412-6179-CO-1804. 
32. Quenum J., Wang K., Zakhor A. Fast, accurate barcode detection in ultra high-resolution images. In: International Conference on Image Processing (ICIP). IEEE, 2021. P. 1019–1023. doi: 10.1109/ICIP42928.2021.9506134.
33. Dubska M., Herout A., Havel J. Real-time precise detection of regular grids and matrix codes. Journal of Real-Time Image Processing. 2016;11(1):193–200. doi: 10.1007/s11554-013-0325-6.
34. Kamnardsiri T., Charoenkwan P., Malang C., Wudhikarn R. 1D barcode detection: Novel benchmark datasets and comprehensive comparison of deep convolutional neural network approaches. Sensors. 2022;22(22). doi: https://www.mdpi.com/1424-8220/22/22/8788.
35. Vezzali E., Bolelli F., Santi S., Grana C. BarBeR: A Barcode Benchmarking Repository. Pattern Recognition, 2025. Springer Nature Switzerland. P. 187–203. doi: 10.1007/978-3-031-78447-7_13.
36. Bursikov A., Bezmaternykh P., Kliatskine V. Precise localization of synchronization patterns for Aztec code matrix extraction. In: International Conference on Machine Vision (ICMV 2020), 2021. P. 116051N. doi: 10.1117/12.2587060. 
37. Karnaushko V.A., Tishin I.I., Bezmaternykh P.V., Arlazarov V.L. An adaptive method for spiral segmentation of Aztec Compact code images with irregular grid structure Computer Optics. 2025; 49(6.2). doi: 10.18287/2412-6179-CO-1790.
38. Bulatov K.B., Bezmaternykh P.V., Nikolaev D.P., Arlazarov V.V. Towards a unified framework for identity documents analysis and recognition. Computer Optics. 2022;46(3). doi: 10.18287/2412-6179-CO-1024.
39. Bezmaternyh P.V., Pliskin E.L., Farsobina V.V. Information system for structured documents OCR quality control, Journal of Information Technologies and Computing Systems. 2018;2:94–102 (In Russ). DOI: 10.14357/20718632180208.
40. Bezmaternykh P.V., Vylegzhanin D.V., Gladilin S.A., Nikolaev D.P. 2D barcodes generative recognition, Artificial Intelligence and Decision Making. 2010;4:63–69 (In Russ).
2025 / 04
2025 / 03
2025 / 02
2025 / 01

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".