Аннотация.
В статье представлен метод топологического картирования помещений, способный строить и обновлять граф локаций по облакам точек и одометрии без использования глобальных метрических координат. В данном методе для локализации в графе используется нейросетевое распознавание локации совместно с сопоставлением сканов по двумерным проекциям. Было проведено экспериментальное исследование предложенного подхода на нескольких фотореалистичных симуляционных средах, а также на данных с реального робота. В симуляции также проводится сравнение с лучшими современными методами топологического картирования. Результаты сравнения подтверждают, что предложенный метод значительно опережает остальные по навигационной эффективности, сохраняя связность графа, высокую площадь покрытия сцены и низкую долю неконсистентных ребер.
Ключевые слова:
одновременное картирование и локализация (SLAM), топологическая карта, мобильные роботы.
DOI 10.14357/20718632240303
EDN CFSQSG
Стр. 28-38.
Литература
1. Швец Е. А. Разработка моделей картирования и патрулирования коллективом беспилотных наземных роботов, использующих техническое зрение и эхолокацию: Автореф. Дисс. канд. техн. наук: [Место защиты: Институт проблем передачи информации им. А.А. Харкевича РАН]. – 2016. – 139 с //Режим доступа: http://iitp. ru/upload/content/1327/synopsis. pdf. – 2016. 2. Боковой А. В. Исследование методов одновременного картирования и локализации беспилотных летательных аппаратов по видеопотоку, полученному с единственной камеры //Второй Всероссийский научно-практический семинар "Беспилотные транспортные средства с элементами искусственного интеллекта". – 2015. – С. 26-33. 3. Labbé M., Michaud F. RTAB˜ Map as an open˜ source lidar and visual simultaneous localization and mapping library for large˜ scale and long˜ term online operation //Journal of field robotics. – 2019. – Vol. 36. – No. 2. – P. 416-446. 4. Hess W. et al. Real-time loop closure in 2D LIDAR SLAM //2016 IEEE international conference on robotics and automation (ICRA). – IEEE, 2016. – P. 1271-1278. 5. Muravyev K., Yakovlev K. Evaluation of RGB-D SLAM in large indoor environments //International Conference on Interactive Collaborative Robotics. – Cham: Springer International Publishing, 2022. – P. 93-104. 6. Щеголева Л. В., Воронов Р. В. Построение дорожного графа для маршрутизации мобильного робота в замкнутой системе коридоров //Инженерный вестник Дона. – 2015. – Т. 37. – №. 3. – С. 43. 7. Blochliger F. et al. Topomap: Topological mapping and navigation based on visual slam maps //2018 IEEE International Conference on Robotics and Automation (ICRA). – IEEE, 2018. – P. 3818-3825. 8. Gomez C. et al. Hybrid topological and 3d dense mapping through autonomous exploration for large indoor environments //2020 IEEE International Conference on Robotics and Automation (ICRA). – IEEE, 2020. – P. 9673-9679. 9. Schmid L. et al. A unified approach for autonomous volumetric exploration of large scale environments under severe odometry drift //IEEE Robotics and Automation Letters. – 2021. – Vol. 6. – No. 3. – P. 4504-4511. 10. Chen X. et al. Fast 3D sparse topological skeleton graph generation for mobile robot global planning //2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). – IEEE, 2022. – P. 10283-10289. 11. Hughes N., Chang Y., Carlone L. Hydra: A real-time spatial perception system for 3D scene graph construction and optimization //arXiv preprint arXiv:2201.13360. – 2022. 12. Yuan Y., Schwertfeger S. Incrementally building topology graphs via distance maps //2019 IEEE International Conference on Real-time Computing and Robotics (RCAR). – IEEE, 2019. – P. 468-474. 13. Kim N. et al. Topological semantic graph memory for image-goal navigation //Conference on Robot Learning. – PMLR, 2023. – P. 393-402. 14. Kwon O. et al. Visual graph memory with unsupervised representation for visual navigation //Proceedings of the IEEE/CVF International Conference on Computer Vision. – 2021. – P. 15890-15899. 15. Wiyatno R. R., Xu A., Paull L. Lifelong topological visual navigation //IEEE Robotics and Automation Letters. – 2022. – Vol. 7. – No. 4. – P. 9271-9278. 16. Yin P. et al. General place recognition survey: Towards the real-world autonomy age //arXiv preprint arXiv:2209.04497. – 2022. 17. Muravyev K., Yakovlev K. Evaluation of Topological Mapping Methods in Indoor Environments //IEEE Access. – 2023. – Vol. 11. – P. 132683-132698. 18. Muravyev K. et al. PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching //arXiv preprint arXiv:2404.01674. – 2024. 19. Harris C. et al. A combined corner and edge detector //Alvey vision conference. – 1988. – Vol. 15. – No. 50. – P. 10-5244. 20. Rublee E. et al. ORB: An efficient alternative to SIFT or SURF //2011 International conference on computer vision. – IEEE, 2011. – P. 2564-2571. 21. Muja M., Lowe D. Flann-fast library for approximate nearest neighbors user manual //Computer Science Department, University of British Columbia, Vancouver, BC, Canada. – 2009. – Vol. 5. – P. 6. 22. Komorowski J. Minkloc3d: Point cloud based large-scale place recognition //Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. – 2021. – С. 1790-1799. 23. Chang A. et al. Matterport3d: Learning from rgb-d data in indoor environments //arXiv preprint arXiv:1709.06158. – 2017. 24. Bavle H. et al. S-graphs+: Real-time localization and mapping leveraging hierarchical representations //arXiv preprint arXiv:2212.11770. – 2022.
|