EDN HUUWNP
Литература
1. Cox R., Fell J. Analyzing human sleep EEG: A methodological primer with code implementation. Sleep Medicine Reviews. 2020; 54 (12):101353.
2. Al-Salman W., Li Y., Oudah A., Almaged S. Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neuroscience Research. 2023; 188 (3): 51-67.
3. Cahn R., Polich J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin. 2006;
4. Díaz M. H., Córdova F. M., Cañete L., Palominos F., Cifuentes F., Rivas G. Inter-channel Correlation in the EEG Activity During a Cognitive Problem Solving Task with an Increasing Difficulty Questions Progression. Procedia Computer Science. 2015; 55: 1420-1425.
5. Díaz M. H., Córdova F. M., Cañete L., Palominos F., Cifuentes F., Sánchez C., Herrera M. Order and Chaos in the Brain: Fractal Time Series Analysis of the EEG Activity During a Cognitive Problem Solving Task. Procedia Computer Science. 2015; 55: 1410-1419.
6. Tong S., Thakor N. V. Quantitative EEG Analysis Methods and Clinical Applications. Artech House. 2009;
7. Erlichman M., Electroencephalographic (EEG) video monitoring. Health Technol Assess Rep. 1990;(4):1-14. PMID: 2104066.
8. Mizrahi E. M. Electroencephalographic-video monitoring in neonates, infants, and children. J Child Neurol. 1994; 9 (l): 46-56.
9. Mizrahi E. M. Pediatric electroencephalographic video monitoring. J Clin Neurophysiol. 1999; 16(2):100-110.
10. Othman W., Kashevnik A., Ryabchikov I., Shilov N. Contactless Camera-Based Approach for Driver Respiratory Rate Evaluation in Vehicle Cabin. 2022 Intelligent Systems Conference, Amsterdam, The Netherlands, 1-2, September 2022, Springer, Cham. 2022. Vol. 2.
11. Othman W., Kashevnik A. Video-Based Real-Time Heart Rate Detection for Drivers Inside the Cabin Using a Smartphone. 2022 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS 2022), Bali, Indonesia, 24-26 November 2022IEEE. 2022. 1–5.
12. Hamoud B., Kashevnik A., Othman W., Shilov N. Neural Network Model Combination for Video-Based Blood Pressure Estimation: New Approach and Evaluation. Sensors, MDPI AG, Basel, Switzerland. 2023. Vol. 23(4). P. 1–16.
13. Das R. K., Martin A., Zurales T., Dowling D., Khan A. A Survey on EEG Data Analysis Software. Sci. 2023; 5(2): 23.
14. Ahani A., Wahbeh H., Nezamfar H. Quantitative change of EEG and respiration signals during mindfulness meditation. J NeuroEngineering Rehabil. 2014; 11: 87.
15. Padmavathi K., Meenakshi K., Swaraja K., Rajani A., Raju M. S. EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review. Complementary Therapies in Clinical Practice. 2021; 43: 101329.
16. Cahn B. R., Delorme A. Polich J. Occipital gamma activation during Vipassana meditation. Cogn Process. 2010; 11: 39–56.
17. Travis F. Comparison of coherence, amplitude, and eLORETA patterns during Transcendental Meditation and TM-Sidhi practice. International J. of Psychophysiology. 2011; 81(3): 198-202.
18. Kjaer T. W., Bertelsen C., Piccini P., Brooks D, Alving J, Lou H. C. Increased dopamine tone during meditation-induced change of consciousness. Cogn. Brain Research. 2002; 13(2): 255-259.
19. Oppenheim A. V., Schafer R., Buck J. R. Discrete-Time Signal Processing. Prentice Hall. 1999.
20. Deng J., Guo J., Yang J., Xue N., Kotsia I., Zafeiriou S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 5962-5979, 1 Oct. 2022.
21. Yaqoob M. K., Ali S. F., Bilal M., Hanif M. S., Al-Saggaf U. M. ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection. Sensors, 20023; 21(11): 3883.