EDN CGRAFY
References
1. Arlazarov, V.L., Arlazarov, V.V., Bulatov, K.B., & et al. (2022). Mobile ID Document Recognition–Coarse-to-Fine Approach. Pattern Recognit, Image Anal, 32, 89–108 . doi: 10.1134/S1054661822010023.
2. Attivissimo, F., Giaquinto, N., Scarpetta, M., & Spadavecchia, M. (2019). An Automatic Reader of Identity Documents. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 3525-3530, doi: 10.1109/SMC.2019.8914438.
3. Das Neves, R. B., Felipe Vercosa, L., Macedo, D., Dantas Bezerra, B. L., & Zanchettin, C. (2020). A Fast Fully Octave Convolutional Neural Network for Document Image Segmentation. 2020 International Joint Conference on Neural Networks (IJCNN). doi: 10.1109/IJCNN48605.2020.9206711.
4. Augereau, O., Journet, N., & Domenger, J.-P. (2013). Semistructured document image matching and recognition. Document Recognition and Retrieval XX. doi:10.1117/12.2003911.
5. Awal, A. M., Ghanmi, N., Sicre, R., & Furon, T. (2017). Complex Document Classification and Localization Application on Identity Document Images. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). doi:10.1109/icdar.2017.77.
6. Skoryukina, N., Arlazarov, V., & Nikolaev, D. (2019). Fast Method of ID Documents Location and Type Identification for Mobile and Server Application. 2019 International Conference on Document Analysis and Recognition (ICDAR). doi:10.1109/icdar.2019.00141.
7. Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110(3), 346–359. doi:10.1016/j.cviu.2007.09.014.
8. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91–110. doi:10.1023/B:VISI.0000029664.99615.94.
9. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. doi:10.1145/358669.358692.
10. Bin Fan, Qingqun Kong, Trzcinski, T., Zhiheng Wang, Chunhong Pan, & Fua, P. (2014). Receptive Fields Selection for Binary Feature Description. IEEE Transactions on Image Processing, 23(6), 2583–2595. doi:10.1109/TIP.2014.2317981.
11. Dalal, N., & Triggs, B. (n.d.). Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). doi:10.1109/CVPR.2005.177
12. Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2020). BEBLID: Boosted Efficient Binary Local Image Descriptor. Pattern Recognition Letters. doi:10.1016/j.patrec.2020.04.005.
13. Bay, H., Ferraris, V., & Van Gool, L.(2005). Wide-Baseline Stereo Matching with Line Segments. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 329-336. doi:10.1109/CVPR.2005.375.
14. Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1), 2(331-340), 2. doi:10.5220/0001787803310340
15. Raguram, R., Chum, O., Pollefeys, M., Matas, J., & Frahm, J.-M. (2013). USAC: A Universal Framework for Random Sample Consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 2022–2038. doi:10.1109/TPAMI.2012.257
16. Skoryukina, N., Faradjev, I., Bulatov, K., & Arlazarov, V.V. (2020). Impact of geometrical restrictions in RANSAC sampling on the ID document classification. Twelfth International Conference on Machine Vision (ICMV 2019), 1143306. doi:10.1117/12.2559306
17. Chiron, G., Ghanmi, N., & Awal, A. M. (2021). ID documents matching and localization with multi-hypothesis constraints. 2020 25th International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR48806.2021.9412437.
18. Chiron, G., Ghanmi, N., & Awal, A. M. (2021). ID documents matching and localization with multi-hypothesis constraints. 2020 25th International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR48806.2021.9412437.
19. Rusiñol, M., & Lladós, J. (2009). Logo Spotting by a Bagof-words Approach for Document Categorization. 2009 10th International Conference on Document Analysis and Recognition. doi:10.1109/ICDAR.2009.103.
20. Arlazarov, V. V., Bulatov, K., Chernov, T., & Arlazarov, V. L. (2019). MIDV-500: A Dataset for Identity Document Analysis and Recognition on Mobile Devices in Video Stream. Computer Optics, 43(5), 818–824. doi:10.18287/2412-6179-2019-43-5-818-824.
21. Chernyshova, Y., Emelianova, E., Sheshkus, A., & Arlazarov, V.V. (2021). MIDV-LAIT: a challenging dataset for recognition of IDs with Perso-Arabic, Thai, and Indian scripts. The 16th International Conference on Document Analysis and Recognition (ICDAR). doi:10.1007/978-3-030-86331-9_17.
22. Trzcinski, T., Christoudias, M., Fua, P., & Lepetit, V. (2013). Boosting Binary Keypoint Descriptors. 2013 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/CVPR.2013.370.
23. Sheshkus, A., Chirvonaya, A., & Arlazarov, V.L.(2022). Tiny CNN for feature point description for document analysis: approach and dataset. Computer Optics, 46(3), 429-435. doi:10.18287/2412-6179-CO-1016.