Аннотация.
В работе представлена концепция сервиса High-Throughput Virtual Screening as a Service (HiTViSc), реализующего облачный сервис виртуального скрининга лекарств на базе концепции распределенных вычислений Desktop Grid. Описаны три логических уровня функционирования сервиса, рабочие процессы пользователя и принцип многопользовательского доступа. Концепция описывает сервис, представляющий собой программную систему с необходимой функциональностью для решения задачи виртуального скрининга с использованием практически неограниченно масштабируемых вычислительных ресурсов Desktop Grid.
Ключевые слова:
виртуальный скрининг, добровольные вычисления, Desktop Grid, облачные вычисления, Desktop Grid as a Service, Virtual Screening as a Service, High-Throughput Virtual Screening as a Service.
Стр. 102-113.
DOI 10.14357/20718632230311 Литература
1. Anderson DP. BOINC: A Platform for Volunteer Computing. Journal of Grid Computing. 2020;18:99–122. doi:10.1007/s10723-019-09497-9 2. Ivashko E. Desktop Grid and Cloud Computing: Short Survey. In: Voevodin V, Sobolev S. (eds.) Supercomputing. RuSCDays 2021. Communications in Computer and Information Science, vol 1510. Springer, Cham; 2021. p. 445–456. doi:10.1007/978-3-030-92864-3_34 3. Ivashko E. Desktop Grid as a Service Concept. In: Voevodin V, Sobolev S, Yakobovskiy M, Shagaliev R. (eds.) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science v. 13708. Springer, Cham; 2022. p. 632–643. doi:10.1007/978-3-031-22941-1_46 4. Bechelane Maia EH, Assis LC, Alves de Oliveira T, Marques da Silva A, Gutterres Taranto A. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry. 2020;8:343. doi:10.3389/fchem.2020.00343 5. Torres PHM, Sodero ACR, Jofily P, Silva-Jr. FP. Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences. 2019;20(18):4574. doi:10.3390/ijms20184574 6. Olğaç A, Türe A, Olğaç S, Möller S. Cloud-Based High Throughput Virtual Screening in Novel Drug Discovery. In: Kołodziej J, González-Vélez H. (eds.) High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer Science v. 11400. Springer, Cham; 2019. p. 250-278. doi:10.1007/978-3-030-16272-6_9. 7. Singh N, Chaput L, Villoutreix BO Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Briefings in Bioinformatics. 2021;22(2):1790–1818. doi:10.1093/bib/bbaa034 8. Zhang B, Li H, Yu K, Jin Z. Molecular docking-based computational platform for high-throughput virtual screening. CCF Trans High Perform Comput. 2022;4(1):63-74. doi:10.1007/s42514-021-00086-5 9. Mo Q, Xu Z, Yan H, Chen P, Lu Y. VSTH: a user-friendly web server for structure-based virtual screening on Tianhe-2. Bioinformatics. 2023;39(1):btac740. doi:10.1093/bioinformatics/btac740 10. Nikitina N, Manzyuk M, Podlipnik Č, Jukic M. Volunteer computing project SiDock@home for virtual drug screening against SARS-CoV-2. In: Byrski A, Czachórski T, Gelenbe E, Grochla K, Murayama Y. (eds.) Computer Science Protecting Human Society Against Epidemics. ANTICOVID 2021. IFIP Advances in Information and Communication Technology 2021 v. 616. Springer, Cham. p. 23-34. doi:10.1007/978-3-030-86582-5_3 11. Mottin M, de Paula Sousa BK, de Moraes Roso Mesquita NC, et al. Discovery of New Zika Protease and Polymerase Inhibitors through the Open Science Collaboration Project OpenZika. Journal of Chemical Information and Modeling. 2022;62(24):6825-6843. doi:10.1021/acs.jcim.2c00596 12. Zhang B, D’Erasmo MP, Murelli RP, Gallicchio E. Free energy-based virtual screening and optimization of RNase H inhibitors of HIV-1 reverse transcriptase. ACS omega. 2016;1(3):435-447. doi:10.1021/acsomega.6b00123 13. Ивашко Е.Е., Никитина Н.Н., Меллер С. Высокопроизводительный виртуальный скрининг в Enterprise Desktop Grid на базе BOINC. Вестник Южно-Уральского государственного университета, серия Вычислительная математика и информатика. 2015;4(1):57-63. doi:10.14529/cmse150105 14. Lloyd DG, Golfis G, Knox AJ, et al. Oncology exploration: charting cancer medicinal chemistry space. Drug discovery today. 2006;11(3-4):149-159. doi:10.1016/S1359-6446(05)03688-3 15. Krasoulis A, Antonopoulos N, Pitsikalis V, Theodorakis S. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features. Journal of Chemical Information and Modeling. 2022;62:4642–4659. doi:10.1021/acs.jcim.2c01057 16. Hawkins P. Virtual Screening At Ultra-Large Scale: 1.5 Billion And Counting - Webinars [Электронный ресурс] http://www.healthtech.com/openeye-scientific-virtualscreening-at-ultra-large-scale/ (Дата обращения: 18.01.2023) 17. Blaze Cloud from Cresset. [Электронный ресурс] www.cresset-group.com/products/blaze/\#blaze-cloud (Дата обращения: 18.01.2023) 18. Ivashko V, Ivashko E. BOINC-Based Volunteer Computing Projects: Dynamics and Statistics. In: Voevodin V, Sobolev S, Yakobovskiy M, Shagaliev R. (eds.) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science, v. 13708. Springer, Cham; 2022. p. 619–631 doi:10.1007/978-3-031-22941-1_45 19. Tingting L, Lu D, Zhang H, et al. Applying highperformance computing in drug discovery and molecular simulation. National Science Review. 2016;3(1): 49-63. doi:10.1093/nsr/nww003 20. Nikitina N, Ivashko E, Tchernykh A. Congestion Game Scheduling for Virtual Drug Screening Optimization.Journal of Computer-Aided Molecular Design. 2018:32(2);363-374. doi:10.1007/s10822-017-0093-7 21. Nikitina N, Ivashko E. Optimization of the Workflow in a BOINC-Based Desktop Grid for Virtual Drug Screening. In: Voevodin V., Sobolev S., Yakobovskiy M., Shagaliev R. (eds.) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science, v. 13708. Springer, Cham; 2022. p. 686–698. doi:10.1007/978-3-031-22941-1_50 22. Mazalov VV, Nikitina NN, Ivashko EE. Hierarchical Two- Level Game Model for Tasks Scheduling in a Desktop Grid. In: 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), St. Petersburg, Russia; 2014. p. 541-545 doi:10.1109/ICUMT.2014.7002159 23. Ivashko E, Litovchenko V. Project Progress Forecasting in a Desktop Grid. In: Voevodin V, Sobolev S. (eds.) Supercomputing. RuSCDays 2021. Communications in Computer and Information Science, v. 1510. Springer, Cham; 2021. p. 487–497. doi:10.1007/978-3-030-92864-3_37 24. Ivashko E, Nikitina N. Replication of “Tail” Computations in a Desktop Grid Project. In: Voevodin V, Sobolev S. (eds.) Supercomputing. RuSCDays 2020. Communications in Computer and Information Science, v. 1331. Springer, Cham; 2020. doi:10.1007/978-3-030-64616-5_52 25. Chernov I, Nikitina N. Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum. In: Malyshkin V. (eds.) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science, v. 9251. Springer, Cham; 2015. p. 258-267. doi:10.1007/978-3-319-21909-7_25 26. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Research. 2000;28:235-242. doi: 10.1093/nar/28.1.235
|